上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (3): 369-374.doi: 10.3969/j.issn.1674-8115.2022.03.016
收稿日期:
2021-10-15
出版日期:
2022-03-28
发布日期:
2022-05-09
通讯作者:
柯碧莲
E-mail:ten70065@163.com;kebilian@126.com
作者简介:
陈威存(1996—),男,中国台湾,硕士生;电子信箱:ten70065@163.com。
基金资助:
TEN Weijung(), YUAN Ying, KE Bilian()
Received:
2021-10-15
Online:
2022-03-28
Published:
2022-05-09
Contact:
KE Bilian
E-mail:ten70065@163.com;kebilian@126.com
Supported by:
摘要:
非编码RNA是一类无法借由翻译形成蛋白质的RNA,包括微RNA(microRNA,miRNA )、长链非编码RNA(long non-coding RNA,lncRNA)和环状RNA(circular RNA,circRNA)等,曾被认为是“转录噪音”。研究发现非编码RNA参与许多人类疾病病理生理过程,包括细胞的增殖、分化、凋亡及胚胎发育等。近年来发现近视患者及近视动物模型的巩膜组织、视网膜色素上皮细胞(retinal pigment epithelium,RPE)、房水组织存在非编码RNA表达谱变化。非编码RNA异常表达可能通过调节巩膜细胞外基质重塑过程、调整脉络膜血流及厚度来影响近视的发生发展。因此,该文围绕非编码RNA在近视领域的研究进展进行综述,以期为近视的诊疗提供全新的方向和思路。
中图分类号:
陈威存, 苑影, 柯碧莲. 近视相关非编码RNA的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 369-374.
TEN Weijung, YUAN Ying, KE Bilian. Research progress of non-coding RNA in myopia[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 369-374.
1 | BORKIEWICZ L, KALAFUT J, DUDZIAK K, et al. Decoding lncRNAs[J]. Cancers (Basel), 2021, 13(11). |
2 | LASDA E, PARKER R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12): 1829-1842. |
3 | JAN C, XU R, LUO D, et al. Association of visual impairment with economic development among Chinese schoolchildren[J]. JAMA Pediatr, 2019, 173(7): e190914. |
4 | SUN J, ZHOU J, ZHAO P, et al. High prevalence of myopia and high myopia in 5 060 Chinese university students in Shanghai[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7504-7509. |
5 | MORGAN I G, FRENCH A N, ASHBY R S, et al. The epidemics of myopia: aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149. |
6 | HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. |
7 | FLITCROFT D I. The complex interactions of retinal, optical and environmental factors in myopia aetiology[J]. Prog Retin Eye Res, 2012, 31(6): 622-660. |
8 | OHNO-MATSUI K, LAI T Y, LAI C C, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. |
9 | MENG W, BUTTERWORTH J, MALECAZE F, et al. Axial length of myopia: a review of current research[J]. Ophthalmologica, 2011, 225(3): 127-134. |
10 | RYMER J, WILDSOET C F. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review[J]. Vis Neurosci, 2005, 22(3): 251-261. |
11 | HARPER A R, SUMMERS J A. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development[J]. Exp Eye Res, 2015, 133: 100-111. |
12 | BAIRD P N, SAW S M, LANCA C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99. |
13 | GREGORY R I, CHENDRIMADA T P, COOCH N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing[J]. Cell, 2005, 123(4): 631-640. |
14 | AMBROS V. microRNAs: tiny regulators with great potential[J]. Cell, 2001, 107(7): 823-826. |
15 | LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. |
16 | MENS M M J, GHANBARI M. Cell cycle regulation of stem cells by microRNAs[J]. Stem Cell Rev Rep, 2018, 14(3): 309-322. |
17 | METLAPALLY R, GONZALEZ P, HAWTHORNE F A, et al. Scleral micro-RNA signatures in adult and fetal eyes[J]. PLoS One, 2013, 8(10): e78984. |
18 | TANAKA Y, KURIHARA T, HAGIWARA Y, et al. Ocular-component-specific miRNA expression in a murine model of lens-induced myopia[J]. Int J Mol Sci, 2019, 20(15). DOI:10.3390/ijms20153629 |
19 | GUO D, DING M, SONG X, et al. Regulatory roles of differentially expressed microRNAs in metabolic processes in negative lens-induced myopia Guinea pigs[J]. BMC Genomics, 2020, 21(1): 13. |
20 | METLAPALLY R, PARK H N, CHAKRABORTY R, et al. Genome-wide scleral micro- and messenger-RNA regulation during myopia development in the mouse[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6089-6097. |
21 | TKATCHENKO A V, LUO X, TKATCHENKO T V, et al. Large-scale microRNA expression profiling identifies putative retinal miRNA-mRNA signaling pathways underlying form-deprivation myopia in mice[J]. PLoS One, 2016, 11(9): e0162541. |
22 | MEI F, WANG J, CHEN Z, et al. Potentially important microRNAs in form-deprivation myopia revealed by bioinformatics analysis of microRNA profiling[J]. Ophthalmic Res, 2017, 57(3): 186-193. |
23 | LIU S, CHEN H, MA W, et al. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice[J]. J Cell Mol Med, 2022, 26(1): 186-194. |
24 | GUGGENHEIM J A, MCBRIEN N A. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci, 1996, 37(7): 1380-1395. |
25 | ZHOU X, JI F, AN J, et al. Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera[J]. Mol Vis, 2012, 18: 1312-1324. |
26 | ZHANG J S, DA W J, ZHU G Y, et al. The expression of cytokines in aqueous humor of high myopic patients with cataracts[J]. Mol Vis, 2020, 26: 150-157. |
27 | XIE M, LI Y, WU J, et al. Genetic variants in miR-29a associated with high myopia[J]. Ophthalmic Genet, 2016, 37(4): 456-458. |
28 | ZHANG Y, HU D N, ZHU Y, et al. Regulation of matrix metalloproteinase-2 secretion from scleral fibroblasts and retinal pigment epithelial cells by miR-29a[J]. Biomed Res Int, 2017, 2017: 2647879. |
29 | WANG M, YANG Z K, LIU H, et al. Genipin inhibits the scleral expression of miR-29 and MMP2 and promotes COL1A1 expression in myopic eyes of guinea pigs[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 1031-1038. |
30 | ZHU Y, LI W, ZHU D, et al. microRNA profiling in the aqueous humor of highly myopic eyes using next generation sequencing[J]. Exp Eye Res, 2020, 195: 108034. |
31 | ZHU Y, ZHANG Y, JIANG R, et al. MicroRNA-29a may influence myopia development by regulating collagen I[J]. Curr Eye Res, 2021: 1-9. |
32 | TANG S M, MA L, LU S Y, et al. Association of the PAX6 gene with extreme myopia rather than lower grade myopias[J]. Br J Ophthalmol, 2018, 102(4): 570-574. |
33 | TANG S M, RONG S S, YOUNG A L, et al. PAX6 gene associated with high myopia: a meta-analysis[J]. Optom Vis Sci, 2014, 91(4): 419-429. |
34 | ROY S, THAKUR A R. Two models of Smad4 and Hoxa9 complex are proposed: structural and interactional perspective[J]. J Biomol Struct Dyn, 2011, 28(5): 729-742. |
35 | CHEN K C, HSI E, HU C Y, et al. MicroRNA-328 may influence myopia development by mediating the PAX6 gene[J]. Invest Ophthalmol Vis Sci, 2012, 53(6): 2732-2739. |
36 | LIANG C L, HSI E, CHEN K C, et al. A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3500-3505. |
37 | SEKO Y, SHIMIZU M, TOKORO T. Retinoic acid increases in the retina of the chick with form deprivation myopia[J]. Ophthalmic Res, 1998, 30(6): 361-367. |
38 | BRYNE J C, VALEN E, TANG M H, et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update[J]. Nucleic Acids Res, 2008, 36(Database issue): D102-D106. |
39 | KUNCEVICIENE E, LIUTKEVICIENE R, BUDIENE B, et al. Independent association of whole blood miR-328 expression and polymorphism at 3´UTR of the PAX6 gene with myopia[J]. Gene, 2019, 687: 151-155. |
40 | LIANG C L, HSU P Y, NGO C S, et al. HOXA9 is a novel myopia risk gene[J]. BMC Ophthalmol, 2019, 19(1): 28. |
41 | KUNCEVICIENE E, BUDIENE B, SMALINSKIENE A, et al. Association of hsa-mir-328-3p expression in whole blood with optical density of retinal pigment epithelial cells[J]. In Vivo, 2021, 35(2): 827-831. |
42 | YEASMIN F, YADA T, AKIMITSU N. Micropeptides encoded in transcripts previously identified as long noncoding RNAs: a new chapter in transcriptomics and proteomics[J]. Front Genet, 2018, 9: 144. |
43 | PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641. |
44 | GUIDUCCI G, STOJIC L. Long noncoding RNAs at the crossroads of cell cycle and genome integrity[J]. Trends Genet, 2021, 37(6): 528-546. |
45 | LI F, WEN X, ZHANG H, et al. Novel insights into the role of long noncoding RNA in ocular diseases[J]. Int J Mol Sci, 2016, 17(4): 478. |
46 | GENG C, LI Y, GUO F, et al. RNA sequencing analysis of long non-coding RNA expression in ocular posterior poles of guinea pig myopia models[J]. Mol Vis, 2020, 26: 117-134. |
47 | LIM D H, HAN J, CHUNG T Y, et al. The high prevalence of myopia in Korean children with influence of parental refractive errors: The 2008-2012 Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2018, 13(11): e0207690. |
48 | CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. |
49 | VERDUCI L, TARCITANO E, STRANO S, et al. CircRNAs: role in human diseases and potential use as biomarkers[J]. Cell Death Dis, 2021, 12(5): 468. |
50 | HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. |
51 | ZHANG S, ZHANG G, ZHOU X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. |
52 | ZHAO F, ZHANG D, ZHOU Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878. |
53 | LI D, LIU C, SUN Y N, et al. Targeting choroidal vascular dysfunction via inhibition of circRNA-FoxO1 for prevention and management of myopic pathology[J]. Mol Ther, 2021, 29(7): 2268-2280. |
[1] | 徐斐翔, 汪升, 薛明明, 童朝阳, 陈玉梅. 长链非编码RNA-B230352I09表达改变对H9C2心肌细胞增殖及周期的影响[J]. 上海交通大学学报(医学版), 2022, 42(5): 578-582. |
[2] | 刘子杨, 王小文, 陈力. lncRNA GK-IT1通过调控醛缩酶A影响非小细胞肺癌细胞的恶性进展[J]. 上海交通大学学报(医学版), 2022, 42(5): 591-601. |
[3] | 陈仪婷, 赵安达, 李荣, 康文慧, 李生慧. 循环外泌体微RNA在支气管哮喘中的作用综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 375-380. |
[4] | 赵久红, 童佳婷, 沈郅珺, 吕叶辉. 环状RNA与氧化应激互作机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 393-399. |
[5] | 成英杰, 孙倩倩, 赵敏. 甲基苯丙胺使用和成瘾的表观遗传研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1094-1098. |
[6] | 万淑君, 孔祥, 吕坤. 非编码RNA与糖尿病血管病变的关系[J]. 上海交通大学学报(医学版), 2021, 41(5): 665-670. |
[7] | 傅中懋, 罗再, 戎泽印, 章建明, 李腾飞, 余志龙, 黄陈. 基于高通量测序的结直肠癌组织中环状RNA功能研究与预后分析[J]. 上海交通大学学报(医学版), 2021, 41(2): 187-195. |
[8] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
[9] | 王昱欢, 丁奕岑, 蔡瑶雨, 康亚妮. 差异表达微RNA作为多囊卵巢综合征生物标志物的研究[J]. 上海交通大学学报(医学版), 2021, 41(11): 1429-1435. |
[10] | 岳犇, 王高明, 杨鹿笛, 崔然, 郁丰荣. 胃癌患者预后相关微RNA预测模型的构建及其应用价值探讨[J]. 上海交通大学学报(医学版), 2021, 41(11): 1436-1445. |
[11] | 张 靖. 川楝素通过下调环状RNA circDLST对胃癌细胞BGC-823的抑制作用[J]. 上海交通大学学报(医学版), 2020, 40(9): 1202-1206. |
[12] | 徐 宁,周 甜,侯国俊,沈 南,唐元家. 长链非编码RNA AC073046.25在系统性红斑狼疮易感基因TET3表达调节中的作用[J]. 上海交通大学学报(医学版), 2020, 40(8): 1030-1035. |
[13] | 刘 洁,仇晓春. 乳腺肿瘤干细胞研究热点及趋势分析[J]. 上海交通大学学报(医学版), 2020, 40(7): 881-888. |
[14] | 建方方1,车晓霞2,冯炜炜1. 子宫内膜癌中长链非编码RNA表达谱的生物信息学分析[J]. 上海交通大学学报(医学版), 2020, 40(6): 768-775. |
[15] | 蒋英英1,2,秦 星1,张建军1,陈万涛1. 长链非编码RNA COL11A1-208在口腔鳞状细胞癌中的表达及临床意义[J]. 上海交通大学学报(医学版), 2020, 40(10): 1334-1339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||