上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (5): 665-670.doi: 10.3969/j.issn.1674-8115.2021.05.018
出版日期:
2021-05-28
发布日期:
2021-05-27
通讯作者:
吕坤
E-mail:wanwan901226@163.com;lvkun315@126.com
作者简介:
万淑君(1990—),女,初级检验技师,硕士;电子信箱:基金资助:
Shu-jun WAN(), Xiang KONG, Kun LÜ()
Online:
2021-05-28
Published:
2021-05-27
Contact:
Kun Lü
E-mail:wanwan901226@163.com;lvkun315@126.com
Supported by:
摘要:
非编码RNA(non-coding RNA,ncRNA)为一类不编码蛋白的RNA分子,是机体重要的生物调控因子,在转录及转录后水平调控基因表达,影响糖尿病血管病变的发展过程。ncRNA按其片段大小主要分为微RNA(microRNA,miRNA)、长链非编码RNA(long non coding RNA,lncRNA)及环状RNA(circular RNA,circRNA)。miRNA可在转录后水平调控靶基因表达,并有成为临床诊断标志物的潜能。lncRNA影响多种分子信号通路,其在糖尿病血管病变中的作用逐渐受到关注。circRNA具有显著的基因调节功能,可与miRNA竞争结合位点,参与调控糖尿病血管病变。该文回顾目前有关ncRNA与糖尿病血管病变的研究,探讨ncRNA与糖尿病微血管及大血管病变间的关系,为糖尿病血管病变的诊断和治疗提供新思路。
中图分类号:
万淑君, 孔祥, 吕坤. 非编码RNA与糖尿病血管病变的关系[J]. 上海交通大学学报(医学版), 2021, 41(5): 665-670.
Shu-jun WAN, Xiang KONG, Kun LÜ. Relationship between non-coding RNAs and vascular diseases of diabetes mellitus[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 665-670.
1 | Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications[J]. J Mol Cell Cardiol, 2015, 89: 42-50. |
2 | Cefalu WT, Buse JB, Tuomilehto J, et al. Update and next steps for real-world translation of interventions for type 2 diabetes prevention: reflections from a diabetes care editors expert forum[J]. Diabetes Care, 2016, 39(7): 1186-1201. |
3 | Rübsam A, Parikh S, Fort P. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): 942. |
4 | Tang J, Yao DY, Yan HY, et al. The role of MicroRNAs in the pathogenesis of diabetic nephropathy[J]. Int J Endocrinol, 2019, 2019: 8719060. |
5 | Ahmed F, Bakhashab S, Bastaman I, et al. Anti-angiogenic miR-222, miR-195, and miR-21a plasma levels in T1DM are improved by metformin therapy, thus elucidating its cardioprotective effect: the MERIT study[J]. Int J Mol Sci, 2018, 19(10): 3242. |
6 | DiStefano JK. Beyond the protein-coding sequence: noncoding RNAs in the pathogenesis of type 2 diabetes[J]. Rev Diabet Stud, 2015, 12(3/4): 260-276. |
7 | Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1126-1135. |
8 | Feng J, Xing WL, Xie L. Regulatory roles of MicroRNAs in diabetes[J]. Int J Mol Sci, 2016, 17(10): 1729. |
9 | Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases[J]. J Cell Physiol, 2018, 233(3): 2007-2018. |
10 | Liu TT, Hao Q, Zhang Y, et al. Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II- extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy[J]. Acta Ophthalmol, 2018, 96(5): e626-e635. |
11 | Li EH, Huang QZ, Li GC, et al. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J]. Biosci Rep, 2017, 37(2): BSR20160572. |
12 | Costantino S, Paneni F, Lüscher TF, et al. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart[J]. Eur Heart J, 2016, 37(6): 572-576. |
13 | Zhong X, Chung ACK, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J]. Diabetologia, 2013, 56(3): 663-674. |
14 | Chandy M, Ishida M, Shikatani EA, et al. C-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J]. PLoS One, 2018, 13(8): e0202778. |
15 | de Gonzalo-Calvo D, Cenarro A, Civeira F, et al. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers[J]. Clínica E Investig En Arterioscler, 2016, 28(4): 167-177. |
16 | Long JY, Wang Y, Wang WJ, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13): 11837-11848. |
17 | Badal SS, Wang Y, Long JY, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy[J]. Nat Commun, 2016, 7: 12076. |
18 | Florijn BW, JMGJ Duijs, Levels JHM, et al. Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles, HDL, and ago-2[J]. Diabetes, 2019, 68(12): 2287-2300. |
19 | Cheng HS, Sivachandran N, Lau A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways[J]. EMBO Mol Med, 2013, 5(7): 1017-1034. |
20 | Liu XS, Fan BY, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121. |
21 | Wang L, Chopp M, Lu XR, et al. miR-146a mediates thymosin β4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice[J]. Brain Res, 2019, 1707: 198-207. |
22 | de Gonzalo-Calvo D, Vilades D, Martinezcamblor P, et al. Circulating microRNAs in suspected stable coronary artery disease: a coronary computed tomography angiography study[J]. J Intern Med, 2019, 286(3): 341-355. |
23 | Barber JL, Zellars KN, Barringhaus KG, et al. The effects of regular exercise on circulating cardiovascular-related microRNAs[J]. Sci Rep, 2019, 9(1): 7527. |
24 | Al-Hayali MA, Sozer V, Durmus S, et al. Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients[J]. Biomolecules, 2019, 9(5): 193. |
25 | 王磊,王红娜, 祖晓麟. 血浆miR-126水平与冠状动脉慢血流现象的关系[J]. 中华医学杂志, 2019, 99(17): 1323-1327. |
26 | Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy[J]. Cardiovasc Res, 2017, 113(1): 90-101. |
27 | Seleem M, Shabayek M, Ewida HA. MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes[J]. Diabetes Metab Res Rev, 2019, 35(5): e3130. |
28 | Pernomian L, Moreira JD, Gomes MS. In the view of endothelial microparticles: novel perspectives for diagnostic and pharmacological management of cardiovascular risk during diabetes distress[J]. Exp Diabetes Res, 2018, 2018: 9685205. |
29 | Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2[J]. RNA, 2015, 21(12): 2007-2022. |
30 | He XY, Ou CL, Xiao YH, et al. LncRNAs: key players and novel insights into diabetes mellitus[J]. Oncotarget, 2017, 8(41): 71325-71341. |
31 | Salviano-Silva A, Lobo-Alves SC, de Almeida RC, et al. Besides pathology: long non-coding RNA in cell and tissue homeostasis[J]. Non-Coding RNA, 2018, 4(1): 3. |
32 | Zhu AD, Sun YY, Ma QJ, et al. lncRNA-ATB promotes viability, migration, and angiogenesis in human microvascular endothelial cells by sponging microRNA-195[J]. J Cell Biochem, 2019, 120(9): 14360-14371. |
33 | Feng YM, Chen S, Xu JR, et al. Dysregulation of lncRNAs GM5524 and GM15645 involved in high glucose induced podocyte apoptosis and autophagy in diabetic nephropathy[J]. Mol Med Rep, 2018, 18(4): 3657-3664. |
34 | Abdulle LE, Hao JL, Pant OP, et al. MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: a promising long-noncoding RNA[J]. Int J Med Sci, 2019, 16(4): 548-555. |
35 | Zhang JY, Chen MC, Chen JW, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis[J]. Biosci Rep, 2017, 37(2): BSR20170036. |
36 | Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 470. |
37 | Wang M, Wang SY, Yao D, et al. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy[J]. Mol Cell Endocrinol, 2016, 426: 136-145. |
38 | Yang Y, Lv X, Fan QL, et al. Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: differential expression profile of circulating lncRNA[J]. Clin Nephrol, 2019, 92(1): 25-35. |
39 | Li X, Zeng L, Cao CW, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res, 2017, 350(2): 327-335. |
40 | Hu MS, Wang R, Li XB, et al. LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin[J]. J Cell Mol Med, 2017, 21(11): 2732-2747. |
41 | Yu W, Zhao GQ, Cao RJ, et al. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes[J]. Behav Neurol, 2017, 2017: 2941297. |
42 | Fachrul M, Utomo DH, Parikesit AA. lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy[J]. Silico Pharmacol, 2018, 6(1): 1-5. |
43 | Pant T, Dhanasekaran A, Fang J, et al. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy[J]. BMC Cardiovasc Disord, 2018, 18(1): 1-10. |
44 | Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis and atherosclerosis by enhancing p53 activity[J]. Circulation, 2014, 130(17): 1452-1465. |
45 | Reddy MA, Chen Z, Park JT, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA[J]. Diabetes, 2014, 63(12): 4249-4261. |
46 | Das S, Senapati P, Chen Z, et al. Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells[J]. Nat Commun, 2017, 8(1): 1467. |
47 | Zhang B, Wang D, Ji TF, et al. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model[J]. Oncotarget, 2017, 8(10): 17347-17359. |
48 | Zaiou M. CircRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J]. Cells, 2020, 9(3): 659. |
49 | Yan QJ, He XY, Kuang GY, et al. CircRNA cPWWP2A: an emerging player in diabetes mellitus[J]. J Cell Commun Signal, 2020, 14(3): 351-353. |
50 | Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Investig Ophthalmol Vis Sci, 2017, 58(14): 6500-6509. |
51 | Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877. |
52 | Hu W, Han Q, Zhao L, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1[J]. J Cell Physiol, 2019, 234(2): 1469-1476. |
53 | Liu HF, Wang X, Wang ZY, et al. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11[J]. J Cell Physiol, 2020, 235(5): 4520-4529. |
54 | Wang L, Luo TY, Bao ZH, et al. Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats[J]. Biochem Biophys Res Commun, 2018, 505(3): 644-650. |
55 | Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J]. Sci Rep, 2017, 7: 40342. |
56 | Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J]. Biochem Biophys Res Commun, 2017, 487(4): 769-775. |
57 | Yang F, Li A, Qin Y, et al. A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J]. Mol Ther Nucleic Acids, 2019, 17: 636-643. |
58 | Xu HY, Guo S, Li W, et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015, 5: 12453. |
59 | Li CY, Zhao L, Jiang W, et al. Correct microarray analysis approaches in 'Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus'[J]. Diabetes Vasc Dis Res, 2018, 15(1): 92-93. |
[1] | 张佳思, 邹春波, 卢宇, 陈茜, 张伟亚, 何姣姣. 血脂蛋白磷脂酶A2和中性粒细胞明胶酶相关脂质运载蛋白在诊断早期糖尿病肾病中的价值[J]. 上海交通大学学报(医学版), 2021, 41(6): 770-775. |
[2] | 屠越华, 王筱金, 王炳顺. 个体化营养示范餐对超重及肥胖孕妇妊娠糖尿病的预防效果[J]. 上海交通大学学报(医学版), 2021, 41(3): 360-365. |
[3] | 孙敏, 张冬颖. 钠-葡萄糖共转运蛋白2抑制剂对2型糖尿病患者心血管保护作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(3): 391-395. |
[4] | 王韩影, 蒋炎, 王晴仪, 石新, 牛田, 邢馨丹, 沈胤忱, 陈翀, 刘堃. 光学相干断层扫描血管成像技术观察糖尿病性视网膜病变及糖尿病性黄斑水肿患者视网膜血流变化[J]. 上海交通大学学报(医学版), 2021, 41(2): 166-172. |
[5] | 刘庆, 蔡雯, 张瑞晴, 卢聪, 张佳荣, 徐先明. 妊娠期脂质耐量试验在妊娠期糖尿病风险预测中的价值[J]. 上海交通大学学报(医学版), 2021, 41(2): 210-216. |
[6] | 丁远森, 王枫, 孙家悦, 邵正威, 邹德荣, 陆家瑜. 不同年龄2型糖尿病患者牙周健康流行病学调查[J]. 上海交通大学学报(医学版), 2021, 41(2): 217-222. |
[7] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
[8] | 姜梦迪, 张文. 糖尿病肾病中的组蛋白修饰与靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 103-107. |
[9] | 张松涛, 肖元元, 郭慧, 高清歌, 魏丽. 克兰费尔特综合征合并糖尿病1例报道及文献复习[J]. 上海交通大学学报(医学版), 2021, 41(1): 126-128. |
[10] | 朱雅洁, 林慧, 陈茜, 赵奕然, 刘欣梅, 黄荷凤. 妊娠期糖尿病母亲所产新生儿脐带血皮质醇水平变化及其对子代健康的影响[J]. 上海交通大学学报(医学版), 2021, 41(1): 49-54. |
[11] | 丁贤彬, 毛德强, 焦艳, 陈莉玲, 许杰. 重庆市糖尿病患病率、死亡率及伤残调整寿命年率分析[J]. 上海交通大学学报(医学版), 2021, 41(1): 78-81. |
[12] | 王湘琦,赵超然,熊爱兵. 低氘水联合富血小板血浆对大鼠糖尿病溃疡创面愈合的影响[J]. 上海交通大学学报(医学版), 2020, 40(3): 326-. |
[13] | 陈 帅1,丁风华2,代 杨1,陆 林2,沈 迎2,沈卫峰2. 炎症细胞参与侧支循环形成的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(3): 380-. |
[14] | 郭彦彦,郭 飞,李 彤,李雨晨,黄荷凤,刘欣梅. 妊娠期糖尿病孕妇分娩前凝血指标的改变及其临床意义[J]. 上海交通大学学报(医学版), 2020, 40(12): 1614-1617. |
[15] | 罗 钢,崔永晨,曹 越,张俊峰. 手术创伤对2型糖尿病小鼠术后认知功能和脑葡萄糖代谢的影响[J]. 上海交通大学学报(医学版), 2020, 40(11): 1468-1472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||