
上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (5): 659-664.doi: 10.3969/j.issn.1674-8115.2021.05.017
出版日期:2021-05-28
发布日期:2021-05-27
作者简介:鲁婷玮(1996—),女,硕士生;电子信箱:基金资助:
Ting-wei LU(
), Jian-jun ZHANG, Wan-tao CHEN(
)
Online:2021-05-28
Published:2021-05-27
Supported by:摘要:
外泌体是一种细胞分泌的胞外小囊泡,在细胞之间发挥着传递信息的作用,通过物质的转运来调节各种细胞的生理和病理功能。有研究表明,外泌体直接或通过中间细胞作用于恶性肿瘤细胞,进而在恶性肿瘤的发生、发展中发挥着重要作用。近年来,自然杀伤(natural killer,NK)细胞与肿瘤细胞源性外泌体(tumor-derived exosomes,TDEXs)的相互作用和调控机制成为研究热点。在肿瘤微环境中,TDEXs可以作用于NK细胞,改变NK细胞与其他免疫细胞和免疫因子的相互作用,最终导致NK细胞对恶性肿瘤细胞的免疫防御减弱和免疫耐受产生。该文综述了不同恶性肿瘤组织中TDEXs对NK细胞活性的影响和可能的机制。
中图分类号:
鲁婷玮, 张建军, 陈万涛. 恶性肿瘤细胞来源的外泌体调控自然杀伤细胞活性的相关机制[J]. 上海交通大学学报(医学版), 2021, 41(5): 659-664.
Ting-wei LU, Jian-jun ZHANG, Wan-tao CHEN. Mechanisms related to regulation of natural killer cell activity by exosomes derived from malignant tumor cells[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 659-664.
| 1 | Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420. |
| 2 | Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182. |
| 3 | Niu Y, Zhang C, Sun Z, et al. PtdIns(4)P regulates retromer-motor interaction to facilitate dynein-cargo dissociation at the trans-Golgi network[J]. Nat Cell Biol, 2013, 15(4): 417-429. |
| 4 | Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. |
| 5 | Xiao C, Song F, Zheng YL, et al. Exosomes in head and neck squamous cell carcinoma[J]. Front Oncol, 2019, 9: 894. |
| 6 | Schulz M, Salamero-Boix A, Niesel K, et al. Microenvironmental regulation of tumor progression and therapeutic response in brain metastasis[J]. Front Immunol, 2019, 10: 1713. |
| 7 | Liu YF, Gu Y, Cao XT. The exosomes in tumor immunity[J]. Oncoimmunology, 2015, 4(9): e1027472. |
| 8 | Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(9): 2241. |
| 9 | Zorrilla SR, García AG, Carrión AB, et al. Exosomes in head and neck cancer. Updating and revisiting[J]. J Enzym Inhib Med Chem, 2019, 34(1): 1641-1651. |
| 10 | Matsumoto A, Takahashi Y, Nishikawa M, et al. Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells[J]. Cancer Sci, 2017, 108(9): 1803-1810. |
| 11 | Ye LS, Zhang Q, Cheng YS, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion[J]. J Immunother Cancer, 2018, 6(1): 1-15. |
| 12 | Yang C, Shen CY, Feng T, et al. Noncoding RNA in NK cells[J]. J Leukoc Biol, 2019, 105(1): 63-71. |
| 13 | Sun YY, Guo MF, Feng YJ, et al. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice[J]. Exp Ther Med, 2016, 12(6): 3773-3777. |
| 14 | Han QJ, Zhao HJ, Jiang Y, et al. HCC-derived exosomes: critical player and target for cancer immune escape[J]. Cells, 2019, 8(6): 558. |
| 15 | Sakaue T, Koga H, Iwamoto H, et al. Glycosylation of ascites-derived exosomal CD133: a potential prognostic biomarker in patients with advanced pancreatic cancer[J]. Med Mol Morphol, 2019, 52(4): 198-208. |
| 16 | 高斌, 熊莹晖, 黄泽炳, 等. 乙肝相关性肝细胞癌患者血清外泌体miR-1290水平的变化及其诊断价值[J]. 中国普通外科杂志, 2019, 28(1): 31-38. |
| 17 | Shi R, Wang PY, Li XY, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients[J]. Oncotarget, 2015, 6(29): 26971-26981. |
| 18 | Ying X, Wu QF, Wu XL, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages[J]. Oncotarget, 2016, 7(28): 43076-43087. |
| 19 | Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386. |
| 20 | Lundholm M, Schröder M, Nagaeva O, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion[J]. PLoS One, 2014, 9(9): e108925. |
| 21 | Chow A, Zhou WY, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB[J]. Sci Rep, 2014, 4: 5750. |
| 22 | Zhang T, Lemoi BA, Sentman CL. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy[J]. Blood, 2005, 106(5): 1544-1551. |
| 23 | Schmiedel D, Tai J, Yamin R, et al. The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB[J]. Elife, 2016,16(5). DOI: 10.7554/eLife.13426. |
| 24 | Guerra N, Tan YX, Joncker NT, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy[J]. Immunity, 2008, 28(4): 571-580. |
| 25 | Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16): 4843-4854. |
| 26 | Labani-Motlagh A, Israelsson P, Ottander U, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity[J]. Tumor Biol, 2016, 37(4): 5455-5466. |
| 27 | Alipoor SD, Mortaz E, Varahram M, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer[J]. Front Immunol, 2018, 9: 819. |
| 28 | Zhang Y, Lazaro AM, Lavingia B, et al. Typing for all known MICA alleles by group-specific PCR and SSOP[J]. Hum Immunol, 2001, 62(6): 620-631. |
| 29 | Ashiru O, Boutet P, Fernández-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes[J]. Cancer Res, 2010, 70(2): 481-489. |
| 30 | Lafontaine L, Chaudhry P, Lafleur MJ, et al. Transforming growth factor β regulates proliferation and invasion of rat placental cell lines[J]. Biol Reprod, 2011, 84(3): 553-559. |
| 31 | Chandran PA, Keller A, Weinmann L, et al. The TGF-β-inducible miR-23a cluster attenuates IFN-γ levels and antigen-specific cytotoxicity in human CD8+ T cells[J]. J Leukoc Biol, 2014, 96(4): 633-645. |
| 32 | Sharma P, Ludwig S, Muller L, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma[J]. J Extracell Vesicles, 2018, 7(1): 1435138. |
| 33 | Szczepanski MJ, Szajnik M, Welsh A, et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1[J]. Haematologica, 2011, 96(9): 1302-1309. |
| 34 | Yamada N, Tsujimura N, Kumazaki M, et al. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells[J]. Biochim et Biophys Acta, 2014, 1839(11): 1256-1272. |
| 35 | Berchem G, Noman MZ, Bosseler M, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer[J]. OncoImmunology, 2016, 5(4): e1062968. |
| 36 | Filipazzi P, Bürdek M, Villa A, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression[J]. Semin Cancer Biol, 2012, 22(4): 342-349. |
| 37 | Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes)[J]. Biochem Soc Trans, 2013, 41(1): 245-251. |
| 38 | Liu BD, Sun LJ, Liu Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis[J]. Cancer Cell, 2015, 27(3): 370-381. |
| 39 | Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach[J]. Int J Mol Sci, 2017, 18(9): 1978. |
| 40 | Elsner L, Muppala V, Gehrmann M, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands[J]. J Immunol, 2007, 179(8): 5523-5533. |
| 41 | Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells[J]. Cancer Res, 2005, 65(12): 5238-5247. |
| 42 | Vulpis E, Cecere F, Molfetta R, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-κB axis[J]. Oncoimmunology, 2017, 6(3): e1279372. |
| 43 | Fujita F, Taniguchi Y, Kato T, et al. Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling[J]. Mol Cell Biol, 2003, 23(21): 7780-7793. |
| 44 | Wang YN, Qin X, Zhu XQ, et al. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway[J]. Oral Oncol, 2018, 76: 34-41. |
| 45 | Kandasamy M, Suryawanshi A, Tundup S, et al. RIG-I signaling is critical for efficient polyfunctional T cell responses during influenza virus infection[J]. PLoS Pathog, 2016, 12(7): e1005754. |
| 46 | Schuldner M, Dörsam B, Shatnyeva O, et al. Exosome-dependent immune surveillance at the metastatic niche requires BAG6 and CBP/p300-dependent acetylation of p53[J]. Theranostics, 2019, 9(21): 6047-6062. |
| 47 | Daßler-Plenker J, Reiners KS, van den Boorn JG, et al. RIG-I activation induces the release of extracellular vesicles with antitumor activity[J]. OncoImmunology, 2016, 5(10): e1219827. |
| 48 | Zwirner NW, Domaica CI. Cytokine regulation of natural killer cell effector functions[J]. Biofactors, 2010, 36(4): 274-288. |
| 49 | Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells[J]. Blood, 2005, 106(1): 376-383. |
| 50 | Li Q, Huang QP, Huyan T, et al. Bifacial effects of engineering tumour cell-derived exosomes on human natural killer cells[J]. Exp Cell Res, 2018, 363(2): 141-150. |
| 51 | van Audenaerde JRM, de Waele J, Marcq E, et al. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells[J]. Oncotarget, 2017, 8(34): 56968-56979. |
| 52 | Ohno SI, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells[J]. Mol Ther, 2013, 21(1): 185-191. |
| 53 | Xie YF, Bai O, Zhang HF, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8+ CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70[J]. J Cell Mol Med, 2010, 14(11): 2655-2666. |
| 54 | Yang NB, Li SS, Li GX, et al. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(2): 3683-3695. |
| 55 | Borrelli C, Ricci B, Vulpis E, et al. Drug-induced senescent multiple myeloma cells elicit NK cell proliferation by direct or exosome-mediated IL15 trans-presentation[J]. Cancer Immunol Res, 2018, 6(7): 860-869. |
| 56 | Koyama Y, Ito T, Hasegawa A, et al. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy[J]. Biotechnol Lett, 2016, 38(11): 1857-1866. |
| 57 | Xie CQ, Ji N, Tang ZG, et al. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers[J]. Mol Cancer, 2019, 18(1): 1-15. |
| 58 | Ma T, Chen YQ, Chen YH, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018: 3290372. |
| [1] | 鲁佳艺, 刘锦喆, 郭尚春, 陶诗聪. 纳米材料通过降低活性氧水平促进骨组织再生的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 487-492. |
| [2] | 张博源, 姚志荣. 紫外线诱导的DNA损伤促进皮肤恶性肿瘤发生的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(2): 228-232. |
| [3] | 张烨晟, 杨易静, 黄依雯, 施珑玙, 王曼媛, 陈思思. 肿瘤微环境免疫细胞调节肿瘤细胞耐药性的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 830-838. |
| [4] | 冯昫皎, 刘健悦, 戚炀炀, 孙晶, 沈蕾. 结直肠癌中自然杀伤细胞表型及功能初探[J]. 上海交通大学学报(医学版), 2024, 44(6): 713-722. |
| [5] | 李萍, 蒋惠如, 叶梦月, 王雅玉, 陈潇雨, 袁安彩, 徐文杰, 戴慧敏, 陈曦, 闫小响, 涂圣贤, 郑元琦, 张薇, 卜军. 基于上海社区老年人群队列的心血管疾病和恶性肿瘤的危险因素流行特征分析[J]. 上海交通大学学报(医学版), 2024, 44(5): 617-625. |
| [6] | 刘林楠, 冯莉, 王龙, 刘嘉寅, 范志松. 多能蛋白聚糖在恶性肿瘤中的表达及生物学作用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 525-530. |
| [7] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
| [8] | 卢雨涵, 石亚红, 龙满美, 王子, 吴颖为. 氧化纳米铈清除活性氧改善DSS诱导的小鼠结肠炎疾病活动度的研究[J]. 上海交通大学学报(医学版), 2024, 44(1): 35-42. |
| [9] | 王文博, 张方蓉, 石亭旺, 陈云丰. 恶性肿瘤荧光成像的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(4): 474-479. |
| [10] | 白龙, 夏翔, 曹晖, 张子臻. 腹腔灌洗液循环肿瘤DNA在预测胃肠道恶性肿瘤腹膜转移中应用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(12): 1554-1561. |
| [11] | 江永权, 戴利, 陈天宏, 王晶烁, 张奕, 李吉平. 不同术式治疗喉恶性肿瘤的效果及并发症分析[J]. 上海交通大学学报(医学版), 2023, 43(11): 1430-1435. |
| [12] | 孙天瑶, 蒋时枫, 徐沁, 刘俊岭, 党素英, 樊雪梅. 靶向凝血因子FⅨa-FⅧa复合物结合位点的新型抗栓抗体[J]. 上海交通大学学报(医学版), 2021, 41(9): 1133-1141. |
| [13] | 韦亚忠, 薛晓梅, 何斌. 活性氧介导心肌缺血再灌注损伤的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(6): 826-829. |
| [14] | 郭林秀美, 章一新. 皮肤自体荧光检测技术在疾病诊断中的应用[J]. 上海交通大学学报(医学版), 2021, 41(2): 251-256. |
| [15] | 王李慧, 王真, 王欢, 李红, 蒋慧, 邵静波. 儿童恶性肿瘤并发骨髓坏死2例报道及文献复习[J]. 上海交通大学学报(医学版), 2021, 41(10): 1401-1404. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||