
上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (5): 671-677.doi: 10.3969/j.issn.1674-8115.2021.05.019
出版日期:2021-05-28
发布日期:2021-05-27
作者简介:张佳玲(1999—),女,本科生;电子信箱:基金资助:
Jia-ling ZHANG1(
), Feng-chun ZHANG2, Ying-chun XU1(
)
Online:2021-05-28
Published:2021-05-27
Supported by:摘要:
乳腺癌是女性发病率最高的恶性肿瘤,10%~20%的晚期乳腺癌患者会发生脑转移。近年来随着系统治疗的快速发展,乳腺癌颅外病灶得以有效控制,患者的生存期得以延长,而发生脑转移的可能性也在增加;影像学技术的进步以及常规影像学监测的普及也增加了颅内病灶的检出率。这些都使得乳腺癌脑转移在临床上越来越常见。许多化学治疗药物不能透过血脑屏障。对于发生脑转移的患者,其可选择的治疗方法较少,生存期较短并且生活质量较低。该文着重阐述近年来乳腺癌脑转移系统治疗的研究进展,旨在为该类疾病的基础研究和临床实践提供参考。
中图分类号:
张佳玲, 张凤春, 徐迎春. 乳腺癌脑转移系统治疗的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(5): 671-677.
Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677.
| Drug | Molecular weight/(g·mol-1) | Target | Published trail | Outcome | Reference |
|---|---|---|---|---|---|
| Lapatinib | 581.1 | EGFR/HER2 | LANDSCAPE | ORR of CNS was 65.9% in BCBM patients treated with lapatinib plus capecitabine | [ |
| Neratinib | 557.1 | EGFR/HER2/HER4 | NEfERT-T | Recurrence rate of symptomatic or progressive CNS disease was 8.3% vs 17.3% in neratinib-paclitaxel group and trastuzumab-paclitaxel group, respectively | [ |
| TBCRC022 | ORR of CNS was 49% and PFS was 5.5 months in lapatinib-na?ve patients with progressive brain metastases treated with neratinib plus capecitabine | [ | |||
| NALA | Overall cumulative incidence of intervention for symptomatic CNS disease was 22.8% vs 29.2% for neratinib-capecitabine and lapatinib-capecitabine, respectively | [ | |||
| Tucatinib | 480.5 | HER2 | HER2CLIMB | PFS was 7.6 vs 5.4 months and PFS at 1 year was 24.9% vs 0 in tucatinib-combination group and placebo-combination group, respectively | [ |
| Pyrotinib | 583.1 | EGFR/HER2/HER4 | NCT02973737 | CNS progression rate was 73.3% vs 87.5%, and time to CNS progression was 168.0 d vs 127.0 d in pyrotinib-capecitabine group and placebo-capecitabine group, respectively | [ |
| Abemaciclib | 506.6 | CDK4/6 | NCT02308020 | PFS was 4.4 months, and intracranial clinical benefit rate was 25% in BCBM patients treated with abemaciclib | [ |
| Talazoparib | 380.4 | PARP1/2 | EMBRACA | PFS was 8.6 vs 5.6 months, and ORR was 62.6% vs 27.2% in patients treated with talazoparib and physician's choice, respectively | [ |
表1 BCBM小分子靶向药物及相关临床研究
Tab 1 Small-molecule targeted drugs used in BCBM and relevant clinical trails
| Drug | Molecular weight/(g·mol-1) | Target | Published trail | Outcome | Reference |
|---|---|---|---|---|---|
| Lapatinib | 581.1 | EGFR/HER2 | LANDSCAPE | ORR of CNS was 65.9% in BCBM patients treated with lapatinib plus capecitabine | [ |
| Neratinib | 557.1 | EGFR/HER2/HER4 | NEfERT-T | Recurrence rate of symptomatic or progressive CNS disease was 8.3% vs 17.3% in neratinib-paclitaxel group and trastuzumab-paclitaxel group, respectively | [ |
| TBCRC022 | ORR of CNS was 49% and PFS was 5.5 months in lapatinib-na?ve patients with progressive brain metastases treated with neratinib plus capecitabine | [ | |||
| NALA | Overall cumulative incidence of intervention for symptomatic CNS disease was 22.8% vs 29.2% for neratinib-capecitabine and lapatinib-capecitabine, respectively | [ | |||
| Tucatinib | 480.5 | HER2 | HER2CLIMB | PFS was 7.6 vs 5.4 months and PFS at 1 year was 24.9% vs 0 in tucatinib-combination group and placebo-combination group, respectively | [ |
| Pyrotinib | 583.1 | EGFR/HER2/HER4 | NCT02973737 | CNS progression rate was 73.3% vs 87.5%, and time to CNS progression was 168.0 d vs 127.0 d in pyrotinib-capecitabine group and placebo-capecitabine group, respectively | [ |
| Abemaciclib | 506.6 | CDK4/6 | NCT02308020 | PFS was 4.4 months, and intracranial clinical benefit rate was 25% in BCBM patients treated with abemaciclib | [ |
| Talazoparib | 380.4 | PARP1/2 | EMBRACA | PFS was 8.6 vs 5.6 months, and ORR was 62.6% vs 27.2% in patients treated with talazoparib and physician's choice, respectively | [ |
| 1 | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. |
| 2 | Fecci PE, Champion CD, Hoj J, et al. The evolving modern management of brain metastasis[J]. Clin Cancer Res, 2019, 25(22): 6570-6580. |
| 3 | Waks AG, Winer EP. Breast cancer treatment: a review[J]. JAMA, 2019, 321(3): 288-300. |
| 4 | Xing F, Liu Y, Sharma S, et al. Activation of the c-met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer[J]. Cancer Res, 2016, 76(17): 4970-4980. |
| 5 | Sirkisoon SR, Carpenter RL, Rimkus T, et al. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment[J]. Oncogene, 2020, 39(1): 64-78. |
| 6 | Choy C, Ansari KI, Neman J, et al. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases[J]. Breast Cancer Res, 2017, 19(1): 51. |
| 7 | Witzel I, Oliveira-Ferrer L, Pantel K, et al. Breast cancer brain metastases: biology and new clinical perspectives[J]. Breast Cancer Res, 2016, 18(1): 8. |
| 8 | Ramakrishna N, Temin S, Chandarlapaty S, et al. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: ASCO clinical practice guideline update[J]. J Clin Oncol, 2018, 36(27): 2804-2807. |
| 9 | Osswald M, Blaes J, Liao YX, et al. Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases[J]. Clin Cancer Res, 2016, 22(24): 6078-6087. |
| 10 | Stemmler HJ, Schmitt M, Willems A, et al. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier[J]. Anticancer Drugs, 2007, 18(1): 23-28. |
| 11 | Bonneau C, Paintaud G, Trédan O, et al. Phase Ⅰ feasibility study for intrathecal administration of trastuzumab in patients with HER2 positive breast carcinomatous meningitis[J]. Eur J Cancer, 2018, 95: 75-84. |
| 12 | Park YH, Park MJ, Ji SH, et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients[J]. Br J Cancer, 2009, 100(6): 894-900. |
| 13 | Kodack DP, Chung E, Yamashita H, et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases[J]. Proc Natl Acad Sci USA, 2012, 109(45): E3119-E3127. |
| 14 | Falchook GS, Moulder SL, Wheler JJ, et al. Dual HER2 inhibition in combination with anti-VEGF treatment is active in heavily pretreated HER2-positive breast cancer[J]. Ann Oncol, 2013, 24(12): 3004-3011. |
| 15 | Swain SM, Miles D, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(4): 519-530. |
| 16 | Swain SM, Baselga J, Miles D, et al. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase Ⅲ study CLEOPATRA[J]. Ann Oncol, 2014, 25(6): 1116-1121. |
| 17 | Krop IE, Lin NU, Blackwell K, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA[J]. Ann Oncol, 2015, 26(1): 113-119. |
| 18 | Montemurro F, Ellis P, Delaloge S, et al. Safety and efficacy of trastuzumab emtansine (T-DM1) in 399 patients with central nervous system metastases: Exploratory subgroup analysis from the KAMILLA study[C]//Proceedings of the 2016 San Antonio Breast Cancer Symposium, December6-10, 2016. |
| Antonio San, TX. Philadelphia: AACR. Cancer Res, 2017, 77(4): P1-12-10. | |
| 19 | Emens LA, Esteva FJ, Beresford M, et al. Overall survival (OS) in KATE2, a phase Ⅱ study of programmed death ligand 1 (PD-L1) inhibitor atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC)[J]. Ann Oncol, 2019, 30: v104. |
| 20 | Dong RR, Ji JL, Liu H, et al. The evolving role of trastuzumab emtansine (T-DM1) in HER2-positive breast cancer with brain metastases[J]. Crit Rev Oncol Hematol, 2019, 143: 20-26. |
| 21 | Stumpf PK, Cittelly DM, Robin TP, et al. Combination of trastuzumab emtansine and stereotactic radiosurgery results in high rates of clinically significant radionecrosis and dysregulation of aquaporin-4[J]. Clin Cancer Res, 2019, 25(13): 3946-3953. |
| 22 | Modi SN, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer[J]. N Engl J Med, 2020, 382(7): 610-621. |
| 23 | Banerji U, van Herpen CML, Saura C, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study[J]. Lancet Oncol, 2019, 20(8): 1124-1135. |
| 24 | Bachelot T, Romieu G, Campone M, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study[J]. Lancet Oncol, 2013, 14(1): 64-71. |
| 25 | Awada A, Colomer R, Inoue K, et al. Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NEfERT-T randomized clinical trial[J]. JAMA Oncol, 2016, 2(12): 1557-1564. |
| 26 | Freedman RA, Gelman RS, Anders CK, et al. TBCRC 022: a phase Ⅱ trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases[J]. J Clin Oncol, 2019, 37(13): 1081-1089. |
| 27 | Saura C, Oliveira M, Feng YH, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase Ⅲ NALA trial[J]. J Clin Oncol, 2020, 38(27): 3138-3149. |
| 28 | Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer[J]. N Engl J Med, 2020, 382(7): 597-609. |
| 29 | Borges VF, Ferrario C, Aucoin N, et al. Tucatinib combined with ado-trastuzumab emtansine in advanced ERBB2/HER2-positive metastatic breast cancer: a phase 1b clinical trial[J]. JAMA Oncol, 2018, 4(9): 1214-1220. |
| 30 | Jiang ZF, Yan M, Hu XC, et al. Pyrotinib combined with capecitabine in women with HER2+ metastatic breast cancer previously treated with trastuzumab and taxanes: a randomized phase Ⅲ study[J]. J Clin Oncol, 2019, 37(): 1001. |
| 31 | Anders CK, Le Rhun E, Bachelot TD, et al. A phase Ⅱ study of abemaciclib in patients (pts) with brain metastases (BM) secondary to HR+, HER2- metastatic breast cancer (MBC)[J]. J Clin Oncol, 2019, 37(): 1017. |
| 32 | Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8): 753-763. |
| 33 | Jung J, Lee SH, Park M, et al. Discordances in ER, PR, and HER2 between primary breast cancer and brain metastasis[J]. J Neurooncol, 2018, 137(2): 295-302. |
| 34 | Razavi P, dos Anjos CH, Brown DN, et al. Molecular profiling of ER+ metastatic breast cancers to reveal association of genomic alterations with acquired resistance to CDK4/6 inhibitors[J]. J Clin Oncol, 2019, 37(): 1009. |
| 35 | Ippen FM, Alvarez-Breckenridge CA, Kuter BM, et al. The dual PI3K/mTOR pathway inhibitor GDC-0084 achieves antitumor activity in PIK3CA-mutant breast cancer brain metastases[J]. Clin Cancer Res, 2019, 25(11): 3374-3383. |
| 36 | Ippen FM, Grosch JK, Subramanian M, et al. Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases[J]. Neuro Oncol, 2019, 21(11): 1401-1411. |
| 37 | Shah N, Mohammad AS, Saralkar P, et al. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases[J]. Pharmacol Res, 2018, 132: 47-68. |
| 38 | Melisko ME, Assefa M, Hwang J, et al. Phase Ⅱ study of irinotecan and temozolomide in breast cancer patients with progressing central nervous system disease[J]. Breast Cancer Res Treat, 2019, 177(2): 401-408. |
| 39 | Jung SU, Jeon CW, Choi JH. Long-term survival with eribulin monotherapy after whole brain radiation therapy in a patient with brain metastasis from breast cancer[J]. Asian J Surg, 2020, 43(10): 1008-1009. |
| 40 | Byun KD, Ahn SG, Baik HJ, et al. Eribulin mesylate combined with local treatment for brain metastasis from breast cancer: two case reports[J]. J Breast Cancer, 2016, 19(2): 214-217. |
| 41 | Matsuoka H, Tsurutani J, Tanizaki J, et al. Regression of brain metastases from breast cancer with eribulin: a case report[J]. BMC Res Notes, 2013, 6: 541. |
| 42 | Nieder C, Aandahl G, Dalhaug A. A case of brain metastases from breast cancer treated with whole-brain radiotherapy and eribulin mesylate[J]. Case Rep Oncol Med, 2012, 2012: 537183. |
| 43 | Chang AY, Ying XX. Brain metastases from breast cancer and response to treatment with eribulin: a case series[J]. Breast Cancer (Auckl), 2015, 9: 19-24. |
| 44 | Catania G, Malaguti P, Gasparro S, et al. Activity of eribulin mesylate in brain metastasis from breast cancer: a stone in a pond?[J]. Oncology, 2018, 94(): 29-33. |
| 45 | Hu T, Liu CW, Li QH, et al. Apatinib + CPT-11 + S-1 for treatment of refractory brain metastases in patient with triple-negative breast cancer: case report and literature review[J]. Medicine (Baltimore), 2018, 97(15): e0349. |
| 46 | Lin NU, Gelman RS, Younger WJ, et al. Phase Ⅱ trial of carboplatin (C) and bevacizumab (BEV) in patients (pts) with breast cancer brain metastases (BCBM)[J]. J Clin Oncol, 2013, 31(): 513. |
| 47 | Lu YS, Chen TW, Lin CH, et al. Bevacizumab preconditioning followed by etoposide and cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy[J]. Clin Cancer Res, 2015, 21(8): 1851-1858. |
| 48 | Kumthekar P, Tang SC, Brenner AJ, et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases[J]. Clin Cancer Res, 2020, 26(12): 2789-2799. |
| 49 | Perez EA, Awada A, O'Shaughnessy J, et al. Etirinotecan pegol (NKTR-102) versus treatment of physician's choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Oncol, 2015, 16(15): 1556-1568. |
| 50 | Cortés J, Rugo HS, Awada A, et al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase Ⅲ BEACON trial[J]. Breast Cancer Res Treat, 2017, 165(2): 329-341. |
| 51 | Goldberg SB, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial[J]. Lancet Oncol, 2020, 21(5): 655-663. |
| 52 | Kluger HM, Chiang V, Mahajan A, et al. Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase Ⅱ trial[J]. J Clin Oncol, 2019, 37(1): 52-60. |
| 53 | Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1): 44-59. |
| 54 | Liu JQ, Jiang ZF, Li Q, et al. Efficacy and safety of anti-PD-1 antibody SHR-1210 combined with apatinib in patients with advanced triple-negative breast cancer[J]. J Clin Oncol, 2019, 37(): 1066. |
| 55 | Niwińska A, Murawska M, Pogoda K. Breast cancer subtypes and response to systemic treatment after whole-brain radiotherapy in patients with brain metastases[J]. Cancer, 2010, 116(18): 4238-4247. |
| 56 | Niwińska A. Brain metastases as site of first and isolated recurrence of breast cancer: the role of systemic therapy after local treatment[J]. Clin Exp Metastasis, 2016, 33(7): 677-685. |
| 57 | Miller JA, Kotecha R, Ahluwalia MS, et al. Overall survival and the response to radiotherapy among molecular subtypes of breast cancer brain metastases treated with targeted therapies[J]. Cancer, 2017, 123(12): 2283-2293. |
| 58 | Sperduto PW, Kased N, Roberge D, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases[J]. J Clin Oncol, 2012, 30(4): 419-425. |
| 59 | Subbiah IM, Lei XD, Weinberg JS, et al. Validation and development of a modified breast graded prognostic assessment as a tool for survival in patients with breast cancer and brain metastases[J]. J Clin Oncol, 2015, 33(20): 2239-2245. |
| 60 | Griguolo G, Jacot W, Kantelhardt E, et al. External validation of Modified Breast Graded Prognostic Assessment for breast cancer patients with brain metastases: a multicentric European experience[J]. Breast, 2018, 37: 36-41. |
| [1] | 王静怡, 邓佳丽, 朱仪, 丁心怡, 郭嘉婧, 王中领. 新型pH响应性锰基纳米探针用于乳腺癌铁死亡及磁共振成像实验研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1183-1193. |
| [2] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [3] | 邓佳丽, 郭嘉婧, 王静怡, 丁心怡, 朱仪, 王中领. 自组装载药纳米探针用于乳腺癌焦亡增敏及化学交换饱和转移成像研究[J]. 上海交通大学学报(医学版), 2025, 45(3): 271-281. |
| [4] | 罗文, 吕明君, 张珍, 张雪, 姚志荣. 自噬在皮肤黑色素瘤中的双重效应及耐药中的作用研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 233-240. |
| [5] | 吴诗怡, 陈思, 刘泊含, 刘宇婷, 刘鷖雯, 何怡青, 杜艳, 张国良, 郭倩, 高锋, 杨翠霞. “HA糖外衣”调控ER+乳腺癌细胞干性在内分泌治疗耐药中的作用[J]. 上海交通大学学报(医学版), 2025, 45(10): 1298-1307. |
| [6] | 唐珺倩, 李本尚. 儿童高危细胞遗传学B系急性淋巴细胞白血病治疗新进展[J]. 上海交通大学学报(医学版), 2025, 45(10): 1390-1399. |
| [7] | 吴其蓁, 刘启明, 柴烨子, 陶政宇, 王依楠, 郭欣宁, 姜萌, 卜军. 机器学习预测乳腺癌新辅助治疗后炎症代谢状态改变的模型评价[J]. 上海交通大学学报(医学版), 2024, 44(9): 1169-1181. |
| [8] | 韩依杉, 徐梓淇, 陶梦玉, 范广建, 余波. PRMT6促进乳腺癌细胞的增殖和迁移[J]. 上海交通大学学报(医学版), 2024, 44(8): 999-1010. |
| [9] | 张勇, 李伟宏, 程志鹏, 王斌, 王思珩, 王毓斌. 受体相互作用蛋白激酶1调节癌症进展和免疫反应的研究现状[J]. 上海交通大学学报(医学版), 2024, 44(6): 788-794. |
| [10] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
| [11] | 丁艳玲, 李杰, 袁军, 李燕. 慢性淋巴细胞白血病靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 264-270. |
| [12] | 王卫, 王红丽, 阿力比亚提·艾尼, 衣力亚尔·肉苏, 阿依努尔, 杨亮. 血管抑制蛋白2在三阴性乳腺癌中的功能及其调控可变剪接机制[J]. 上海交通大学学报(医学版), 2024, 44(12): 1526-1535. |
| [13] | 唐思洁, 糜坚青. 抗体药物偶联物在血液肿瘤中的临床应用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(12): 1607-1614. |
| [14] | 谭辰, 徐张润, 薛阳, 陈佳钰, 姚力郡. 老药新用在乳腺癌治疗中的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(11): 1454-1459. |
| [15] | 方馨悦, 石岚, 夏思易, 王佳璇, 吴英理, 何珂骏. Menin-MLL蛋白相互作用及相关抑制剂在MLL基因重排白血病中应用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1287-1298. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||