1 |
MACIAG M C, PHIPATANAKUL W. Prevention of asthma: targets for intervention[J]. Chest, 2020, 158(3): 913-922.
|
2 |
PAPI A, BRIGHTLING C, PEDERSEN S E, et al. Asthma[J]. Lancet, 2018, 391(10122): 783-800.
|
3 |
AARON S D, BOULET L P, REDDEL H K, et al. Underdiagnosis and overdiagnosis of asthma[J]. Am J Respir Crit Care Med, 2018, 198(8): 1012-1020.
|
4 |
CAÑAS J A, SASTRE B, RODRIGO-MUÑOZ J M, et al. Exosomes: a new approach to asthma pathology[J]. Clin Chim Acta, 2019, 495: 139-147.
|
5 |
STOLZENBURG L R, HARRIS A. The role of microRNAs in chronic respiratory disease: recent insights[J]. Biol Chem, 2018, 399(3): 219-234.
|
6 |
李想, 尚云晓. 外泌体及其微小RNA在哮喘中的研究进展[J]. 国际儿科学杂志, 2019, 46(12): 901-906.
|
7 |
GUO Y, JI X, LIU J, et al. Effects of exosomes on pre-metastatic niche formation in tumors[J]. Mol Cancer, 2019, 18(1): 39.
|
8 |
LU T X, ROTHENBERG M E. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
|
9 |
MITCHELL P S, PARKIN R K, KROH E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518.
|
10 |
FEHLMANN T, KAHRAMAN M, LUDWIG N, et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients[J]. JAMA Oncol, 2020, 6(5): 714-723.
|
11 |
SUN Z, SHI K, YANG S, et al. Effect of exosomal miRNA on cancer biology and clinical applications[J]. Mol Cancer, 2018, 17(1): 147.
|
12 |
RAMSAHAI J M, HANSBRO P M, WARK P A B. Mechanisms and management of asthma exacerbations[J]. Am J Respir Crit Care Med, 2019, 199(4): 423-432.
|
13 |
ISHMAEL F T, CRAIG T J, AUGUST A, et al. Circulating micro-RNAs are biomarkers and potential therapeutic targets in asthma[J]. J Allergy Clin Immunol, 2015, 135(2): AB162.
|
14 |
王湘云, 陈乾, 孙亚红, 等. 不同严重程度哮喘患者血清外泌体中微RNA-21的表达水平及其诊断价值[J]. 第二军医大学学报, 2018, 39(7): 740-744.
|
15 |
ATASHBASTEH M, MORTAZ E, MAHDAVIANI S A, et al. Expression levels of plasma exosomal miR-124, miR-125b, miR-133b, miR-130a and miR-125b-1-3p in severe asthma patients and normal individuals with emphasis on inflammatory factors[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 51.
|
16 |
BAHMER T, KRAUSS-ETSCHMANN S, BUSCHMANN D, et al. RNA-seq-based profiling of extracellular vesicles in plasma reveals a potential role of miR-122-5p in asthma[J]. Allergy, 2021, 76(1): 366-371.
|
17 |
ROSTAMI HIR S, ALIZADEH Z, MAZINANI M, et al. Exosomal microRNAs as biomarkers in allergic asthma[J]. Iran J Allergy Asthma Immunol, 2021, 20(2): 160-168.
|
18 |
HUANG Y, ZHANG S, FANG X, et al. Plasma miR-199a-5p is increased in neutrophilic phenotype asthma patients and negatively correlated with pulmonary function[J]. PLoS One, 2018, 13(3): e0193502.
|
19 |
ELBEHIDY R M, YOUSSEF D M, EL-SHAL A S, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114.
|
20 |
王静, 赵怡然, 刘晓佳, 等. 哮喘患儿血清外泌体中miR-7b表达变化及其临床意义[J]. 山东医药, 2020, 60(34): 88-91.
|
21 |
NAIR P, PRABHAVALKAR K S. Neutrophilic asthma and potentially related target therapies[J]. Curr Drug Targets, 2020, 21(4): 374-388.
|
22 |
ZHAO M, JUANJUAN L, WEIJIA F, et al. Expression levels of microRNA-125b in serum exosomes of patients with asthma of different severity and its diagnostic significance[J]. Curr Drug Metab, 2019, 20(10): 781-784.
|
23 |
RIAL M J, RODRIGO-MUÑOZ J M, SASTRE B, et al. Stability of asthma control implies no changes in microRNAs expression[J]. J Investig Allergol Clin Immunol, 2019, 29(5): 388-389.
|
24 |
WEIDNER J, EKERLJUNG L, MALMHÄLL C, et al. Circulating microRNAs correlate to clinical parameters in individuals with allergic and non-allergic asthma[J]. Respir Res, 2020, 21(1): 107.
|
25 |
WARDZYŃSKA A, PAWEŁCZYK M, RYWANIAK J, et al. Circulating miRNA expression in asthmatics is age-related and associated with clinical asthma parameters, respiratory function and systemic inflammation[J]. Respir Res, 2021, 22(1): 177.
|
26 |
KHO A T, SHARMA S, DAVIS J S, et al. Circulating microRNAs: association with lung function in asthma[J]. PLoS One, 2016, 11(6): e0157998.
|
27 |
HUAN T X, CHEN G, LIU C Y, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits[J]. Aging Cell, 2018, 17(1): e12687.
|
28 |
RIAL M J, CAÑAS J A, RODRIGO-MUÑOZ J M, et al. Changes in serum microRNAs after anti-IL-5 biological treatment of severe asthma[J]. Int J Mol Sci, 2021, 22(7): 3558.
|
29 |
TAKA S, TZANI-TZANOPOULOU P, WANSTALL H, et al. MicroRNAs in asthma and respiratory infections: identifying common pathways[J]. Allergy Asthma Immunol Res, 2020, 12(1): 4-23.
|
30 |
WARDZYŃSKA A, PAWEŁCZYK M, RYWANIAK J, et al. Circulating microRNAs and T-cell cytokine expression are associated with the characteristics of asthma exacerbation[J]. Allergy Asthma Immunol Res, 2020, 12(1): 125-136.
|
31 |
HAN J, ZHAO F, ZHANG J, et al. miR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway[J]. Int J Oncol, 2016, 48(5): 1855-1867.
|
32 |
CHEN JJ, OUYANG H, AN X M, et al. miR-125a is upregulated in cancer stem-like cells derived from TW01 and is responsible for maintaining stemness by inhibiting p53[J]. Oncol Lett, 2019, 17(1): 87-94.
|
33 |
UDDIN M A, BARABUTIS N. P53 in the impaired lungs[J]. DNA Repair, 2020, 95: 102952.
|
34 |
TRIAN T, ALLARD B, OZIER A, et al. Selective dysfunction of p53 for mitochondrial biogenesis induces cellular proliferation in bronchial smooth muscle from asthmatic patients[J]. J Allergy Clin Immunol, 2016, 137(6): 1717-1726.e13.
|
35 |
DING Y, HOU Y, LIU Y, et al. Prospects for miR-21 as a target in the treatment of lung diseases[J]. Curr Pharm Des, 2021, 27(3): 415-422.
|
36 |
JIANG C, GUO Y, YU H, et al. Pleiotropic microRNA-21 in pulmonary remodeling: novel insights for molecular mechanism and present advancements[J]. Allergy Asthma Clin Immunol, 2019, 15: 33.
|
37 |
LIU J H, LI C, ZHANG C H, et al. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma[J]. Pulmonology, 2020, 26(1): 18-26.
|
38 |
DOUGHERTY E J, ELINOFF J M, FERREYRA G A, et al. Mineralocorticoid receptor (MR) trans-activation of inflammatory AP-1 signaling: dependence on DNA sequence, MR conformation, and AP-1 family member expression[J]. J Biol Chem, 2016, 291(45): 23628-23644.
|
39 |
WANG J, HE F, CHEN L, et al. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways[J]. Biomed Pharmacother, 2018, 105: 37-44.
|
40 |
LI J C, HUANG L X, HE Z N, et al. Andrographolide suppresses the growth and metastasis of luminal-like breast cancer by inhibiting the NF-κB/miR-21-5p/PDCD4 signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 643525.
|