1 |
ANDERSON W J, DOYLE L A. Updates from the 2020 World Health Organization classification of soft tissue and bone tumours[J]. Histopathology, 2021, 78(5): 644-657.
|
2 |
JIN T, DENG Z P, LIU W F, et al. Magnetic resonance imaging for the assessment of long bone tumors[J]. Chin Med J (Engl), 2017, 130(21): 2547-2550.
|
3 |
MIN J H, LEE M W, PARK H S, et al. Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Radiology, 2020, 297(3): 573-581.
|
4 |
YUAN Y, ZENG D W, LIU Y J, et al. DWI and IVIM are predictors of Ki67 proliferation index: direct comparison of MRI images and pathological slices in a murine model of rhabdomyosarcoma[J]. Eur Radiol, 2020, 30(3): 1334-1341.
|
5 |
ZHANG T, YU J M, WANG Y Q, et al. WHO grade Ⅰ meningioma subtypes: MRI features and pathological analysis[J]. Life Sci, 2018, 213: 50-56.
|
6 |
ABSINTA M, NAIR G, FILIPPI M, et al. Postmortem magnetic resonance imaging to guide the pathologic cut: individualized, 3-dimensionally printed cutting boxes for fixed brains[J]. J Neuropathol Exp Neurol, 2014, 73(8): 780-788.
|
7 |
DWIVEDI D K, CHATZINOFF Y, ZHANG Y, et al. Development of a patient-specific tumor mold using magnetic resonance imaging and 3-dimensional printing technology for targeted tissue procurement and radiomics analysis of renal masses[J]. Urology, 2018, 112: 209-214.
|
8 |
GUY J R, SATI P, LEIBOVITCH E, et al. Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets[J]. J Neurosci Methods, 2016, 257: 55-63.
|
9 |
李小敏, 曲扬, 武文, 等. 3D打印切片盒在骨盆肿瘤边界三维定位中的应用初探[J]. 上海交通大学学报(医学版), 2020, 40(10): 1408-1413.
|
|
LI X M, QU Y, WU W, et al. Preliminary application of MR imaging-pathology co-localization by 3D printing box in pelvic tumor assessment[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2020, 40(10): 1408-1413.
|
10 |
CHAPPELOW J, TOMASZEWSKI J E, FELDMAN M, et al. HistoStitcher©: an interactive program for accurate and rapid reconstruction of digitized whole histological sections from tissue fragments[J]. Comput Med Imaging Graph, 2011, 35(7/8): 557-567.
|
11 |
SOOD R R, SHAO W, KUNDER C, et al. 3D Registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction[J]. Med Image Anal, 2021, 69: 101957.
|
12 |
曲扬, 艾松涛, 杨飞, 等. CT和MRI图像配准融合联合3D打印技术在难治性骨盆肿瘤术前规划中的应用[J]. 上海交通大学学报(医学版), 2017, 37(9): 1239-1244, 1238.
|
|
QU Y, AI S T, YANG F, et al. Application of CT/MRI image registration and fusion combined with 3D printing technique in pre-surgical planning of refractory pelvic tumors[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2017, 37(9): 1239-1244, 1238.
|
13 |
QU Y, LI X M, YAN Z N, et al. Surgical planning of pelvic tumor using multi-view CNN with relation-context representation learning[J]. Med Image Anal, 2021, 69: 101954.
|
14 |
翁丹枫, 傅晓丹, 陈淑惠, 等. EDTA脱钙在骨组织大切片制片中的应用效果[J]. 临床与实验病理学杂志, 2021, 37(3): 350-352.
|
|
WENG D F, FU X D, CHEN X H, et al. Application effect of EDTA decalcification in the preparation of large sections of bone tissue[J]. Chinese Journal of Clinical and Experimental Pathology, 2021, 37(3): 350-352.
|
15 |
PRIESTER A, WU H, KHOSHNOODI P, et al. Registration accuracy of patient-specific, three-dimensional-printed prostate molds for correlating pathology with magnetic resonance imaging[J]. IEEE Trans Biomed Eng, 2019, 66(1): 14-22.
|
16 |
WU H H, PRIESTER A, KHOSHNOODI P, et al. A system using patient-specific 3D-printed molds to spatially align in vivo MRI with ex vivo MRI and whole-mount histopathology for prostate cancer research[J]. J Magn Reson Imaging, 2019, 49(1): 270-279.
|
17 |
LI X M, WU B, ZOU Y X, et al. Development of a 3D-printed pelvic CT phantom combined with fresh pathological tissues of bone tumor[J]. Quant Imaging Med Surg, 2022, 12(9): 4647-4657.
|
18 |
COSTA D N, CHATZINOFF Y, PASSONI N M, et al. Improved magnetic resonance imaging-pathology correlation with imaging-derived, 3D-printed, patient-specific whole-mount molds of the prostate[J]. Invest Radiol, 2017, 52(9): 507-513.
|
19 |
HUANG L, XIA W, ZHANG B, et al. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J]. Comput Methods Programs Biomed, 2017, 143: 67-74.
|
20 |
ZHANG R, HUANG L, XIA W, et al. Multiple supervised residual network for osteosarcoma segmentation in CT images[J]. Comput Med Imaging Graph, 2018, 63: 1-8.
|
21 |
RAUSCHECKER A M, RUDIE J D, XIE L, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI[J]. Radiology, 2020, 295(3): 626-637.
|
22 |
JIANG Y L, EDWARDS A V, NEWSTEAD G M. Artificial intelligence applied to breast MRI for improved diagnosis[J]. Radiology, 2021, 298(1): 38-46.
|