1 |
NAKAMURA Y, ISHIKAWA H, KAWAI K, et al. Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1[J]. Biomaterials, 2013, 34(37): 9393-9400.
|
2 |
NUNAN R, HARDING K G, MARTIN P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity[J]. Dis Model Mech, 2014, 7(11): 1205-1213.
|
3 |
CHEN T Y, WEN T K, DAI N T, et al. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation[J]. Biomaterials, 2021, 269: 120608.
|
4 |
陈军, 张楠. 负压封闭引流联合邻近皮瓣转位修复压疮的临床效果[J]. 临床骨科杂志, 2022, 25(4): 515-517.
|
|
CHEN J, ZHANG N. Clinical effect of vacuum sealing drainage combined with adjacent flap transposition in repairing pressure ulcers[J]. J Clin Orthop, 2022, 25(4): 515-517.
|
5 |
ZHENG Y, JI S, WU H, et al. Topical administration of cryopreserved living micronized amnion accelerates wound healing in diabetic mice by modulating local microenvironment[J]. Biomaterials, 2017, 113: 56-67.
|
6 |
CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281.
|
7 |
SHIEKH P A, SINGH A, KUMAR A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J]. Biomaterials, 2020, 249: 120020.
|
8 |
SCHÖNFELDER U, ABEL M, WIEGAND C, et al. Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro[J]. Biomaterials, 2005, 26(33): 6664-6673.
|
9 |
SPEAR M. Wound exudate: the good, the bad, and the ugly[J]. Plast Surg Nurs, 2012, 32(2): 77-79.
|
10 |
STRECKER-MCGRAW M K, JONES T R, BAER D G. Soft tissue wounds and principles of healing[J]. Emerg Med Clin North Am, 2007, 25(1): 1-22.
|
11 |
DHIVYA S, PADMA V V, SANTHINI E. Wound dressings-a review[J]. Biomedicine (Taipei), 2015, 5(4): 22.
|
12 |
PURNA S K, BABU M. Collagen based dressings: a review[J]. Burns, 2000, 26(1): 54-62.
|
13 |
BOATENG J, CATANZANO O. Advanced therapeutic dressings for effective wound healing: a review[J]. J Pharm Sci, 2015, 104(11): 3653-3680.
|
14 |
JAIN R K, AU P, TAM J, et al. Engineering vascularized tissue[J]. Nat Biotechnol, 2005, 23(7): 821-823.
|
15 |
KONG X, FU J, SHAO K, et al. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa[J]. Acta Biomater, 2019, 100: 255-269.
|
16 |
LI Y, WANG J, QIAN D, et al. Electrospun fibrous sponge via short fiber for mimicking 3D ECM[J]. J Nanobiotechnology, 2021, 19(1): 131.
|
17 |
FU X H, WANG J, QIAN D J, et al. Living electrospun short fibrous sponge via engineered nanofat for wound healing[J]. Adv Fiber Mater, 2022. DOI : 10.1007/s42765-022-00229-5.
|
18 |
SENTHIL R, BERLY R, BHARGAVI RAM T, et al. Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing[J]. Int J Artif Organs, 2018, 41(8): 467-473.
|
19 |
EROL O, UYAN I, HATIP M, et al. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications[J]. Nanomedicine, 2018, 14(7): 2433-2454.
|
20 |
QIAN Y, SONG J, ZHAO X, et al. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis[J]. Adv Sci (Weinh), 2018, 5(4): 1700499.
|
21 |
LÓPEZ-DOLADO E, GONZÁLEZ-MAYORGA A, GUTIÉRREZ M C, et al. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats[J]. Biomaterials, 2016, 99: 72-81.
|
22 |
GOUGH J E, SCOTCHFORD C A, DOWNES S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis[J]. J Biomed Mater Res, 2002, 61(1): 121-130.
|
23 |
LIU G S, YAN X, YAN F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing[J]. Nanoscale Res Lett, 2018, 13(1): 309.
|
24 |
BLAKENEY B A, TAMBRALLI A, ANDERSON J M, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold[J]. Biomaterials, 2011, 32(6): 1583-1590.
|
25 |
WANG J, CHENG Y, WANG H, et al. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration[J]. Acta Biomater, 2020, 117: 180-191.
|
26 |
WANG J, LIN J, CHEN L, et al. Endogenous electric-field-coupled electrospun short fiber via collecting wound exudation[J]. Adv Mater, 2022, 34(9): e2108325.
|
27 |
SINHA RAY S. Polylactide-based bionanocomposites: a promising class of hybrid materials[J]. Acc Chem Res, 2012, 45(10): 1710-1720.
|
28 |
INKINEN S, HAKKARAINEN M, ALBERTSSON A C, et al. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12(3): 523-532.
|
29 |
SENTHIL R, BERLY R, BHARGAVI RAM T, et al. Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing[J]. Int J Artif Organs, 2018, 41(8): 467-473.
|
30 |
FU C, BAI H, ZHU J, et al. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide[J]. PLoS One, 2017, 12(11): e0188352.
|
31 |
YANG Y, HUANG K, WANG M, et al. Ubiquitination flow repressors: enhancing wound healing of infectious diabetic ulcers through stabilization of polyubiquitinated hypoxia-inducible factor-1α by theranostic nitric oxide nanogenerators[J]. Adv Mater, 2021, 33(45): e2103593.
|
32 |
HINZ B. The role of myofibroblasts in wound healing[J]. Curr Res Transl Med, 2016, 64(4): 171-177.
|