1 |
MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459.
|
2 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33.
|
3 |
SANGRO B, SAROBE P, HERVÁS-STUBBS S, et al. Advances in immunotherapy for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-543.
|
4 |
RIMASSA L, PERSONENI N, CZAUDERNA C, et al. Systemic treatment of HCC in special populations[J]. J Hepatol, 2021, 74(4): 931-943.
|
5 |
BERTUCCIO P, TURATI F, CARIOLI G, et al. Global trends and predictions in hepatocellular carcinoma mortality[J]. J Hepatol, 2017, 67(2): 302-309.
|
6 |
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
|
7 |
ZHU J Y, TANG B F, LI J, et al. Identification and validation of the angiogenic genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular carcinoma[J]. Aging, 2020, 12(9): 7848-7873.
|
8 |
DING Z B, ERICKSEN R E, LEE Q Y, et al. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis[J]. Amino Acids, 2021, 53(12): 1807-1815.
|
9 |
MARQUEZ J, FLORES J, KIM A H, et al. Rescue of TCA cycle dysfunction for cancer therapy[J]. J Clin Med, 2019, 8(12): 2161.
|
10 |
SONG B S, MOON J S, TIAN J W, et al. Mitoribosomal defects aggravate liver cancer via aberrant glycolytic flux and T cell exhaustion[J]. J Immunother Cancer, 2022, 10(5): e004337.
|
11 |
LI M, WANG L, WANG Y J, et al. Mitochondrial fusion via OPA1 and MFN1 supports liver tumor cell metabolism and growth[J]. Cells, 2020, 9(1): 121.
|
12 |
LI X J, LI Y M, XU A J, et al. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1992104.
|
13 |
CAI Y L, LIN Y X, XIONG X Z, et al. Knockdown expression of MECR, a novel gene of mitochondrial FAS Ⅱ inhibits growth and colony-formation, promotes apoptosis of hepatocelluar carcinoma cells[J]. Biosci Trends, 2019, 13(3): 234-244.
|
14 |
WALLACE D C. Mitochondria and cancer[J]. Nat Rev Cancer, 2012, 12(10): 685-698.
|
15 |
SANCHO P, BARNEDA D, HEESCHEN C. Hallmarks of cancer stem cell metabolism[J]. Br J Cancer, 2016, 114(12): 1305-1312.
|
16 |
KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240.
|
17 |
VAZQUEZ F, LIM J H, CHIM H, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress[J]. Cancer Cell, 2013, 23(3): 287-301.
|
18 |
FARGE T, SALAND E, DE TONI F, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism[J]. Cancer Discov, 2017, 7(7): 716-735.
|
19 |
ABBAS S, LUGTHART S, KAVELAARS F G, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value[J]. Blood, 2010, 116(12): 2122-2126.
|
20 |
PASINI B, MCWHINNEY S R, BEI T, et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD[J]. Eur J Hum Genet, 2008, 16(1): 79-88.
|
21 |
LEHTONEN H J, BLANCO I, PIULATS J M, et al. Conventional renal cancer in a patient with fumarate hydratase mutation[J]. Hum Pathol, 2007, 38(5): 793-796.
|
22 |
FU J, LIU G X, ZHANG X, et al. TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication[J]. Cancer Gene Ther, 2023, 30(5): 738-751.
|
23 |
HUANG Q C, WU D, ZHAO J, et al. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis[J]. EMBO J, 2022, 41(11): e110324.
|
24 |
CHELLA KRISHNAN K, KURT Z, BARRERE-CAIN R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease[J]. Cell Syst, 2018, 6(1): 103-115.e7.
|
25 |
WALLACE D C. Mitochondria and cancer[J]. Nat Rev Cancer, 2012, 12(10): 685-698.
|
26 |
LUO Y D, MA J J, LU W Q. The significance of mitochondrial dysfunction in cancer[J]. Int J Mol Sci, 2020, 21(16): 5598.
|
27 |
GAO F, LIU Q C, LI G P, et al. Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma[J]. Open Biol, 2016, 6(6): 150256.
|
28 |
PARK E R, KIM S B, LEE J S, et al. The mitochondrial hinge protein, UQCRH, is a novel prognostic factor for hepatocellular carcinoma[J]. Cancer Med, 2017, 6(4): 749-760.
|
29 |
SUN H, WANG F C, HUANG Y Q, et al. Targeted inhibition of ACLY expression to reverse the resistance of sorafenib in hepatocellular carcinoma[J]. J Cancer, 2022, 13(3): 951-964.
|
30 |
GRANCHI C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism[J]. Eur J Med Chem, 2018, 157: 1276-1291.
|
31 |
WEI J, LEIT S, KUAI J, et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase[J]. Nature, 2019, 568(7753): 566-570.
|
32 |
ICARD P, WU Z R, FOURNEL L, et al. ATP citrate lyase: a central metabolic enzyme in cancer[J]. Cancer Lett, 2020, 471: 125-134.
|
33 |
HAN Q, CHEN C A, YANG W, et al. ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 251-261.
|
34 |
LEITHNER K, HRZENJAK A, TRÖTZMÜLLER M, et al. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer[J]. Oncogene, 2015, 34(8): 1044-1050.
|
35 |
HYROŠŠOVÁ P, ARAGÓ M, MORENO-FELICI J, et al. PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner[J]. Cancer Metab, 2021, 9(1): 1.
|
36 |
BLUEMEL G, PLANQUE M, MADREITER-SOKOLOWSKI C T, et al. PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells[J]. Free Radic Biol Med, 2021, 176: 34-45.
|
37 |
LIU M X, JIN L, SUN S J, et al. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma[J]. Oncogene, 2018, 37(12): 1637-1653.
|
38 |
COSENTINO K, HERTLEIN V, JENNER A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation[J]. Mol Cell, 2022, 82(5): 933-949.e9.
|
39 |
LUO X, O'NEILL K L, HUANG K. The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?[J]. F1000Research, 2020, 9: 935.
|
40 |
HAO B B, LI X J, JIA X L, et al. The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L[J]. Acta Pharmacol Sin, 2020, 41(9): 1246-1254.
|
41 |
LI Y, ZHENG W Q, LU Y Y, et al. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease[J]. Cell Death Dis, 2021, 13(1): 14.
|
42 |
CHEN Y Y, WANG W H, CHE L, et al. BNIP3L-dependent mitophagy promotes HBx-induced cancer stemness of hepatocellular carcinoma cells via glycolysis metabolism reprogramming[J]. Cancers, 2020, 12(3): 655.
|