上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (4): 501-508.doi: 10.3969/j.issn.1674-8115.2024.04.011
• 综述 • 上一篇
收稿日期:
2023-10-19
接受日期:
2024-02-09
出版日期:
2024-04-28
发布日期:
2024-04-28
通讯作者:
刘松
E-mail:shenyubin1998@sjtu.edu.cn;liusong@xinhuamed.com.cn
作者简介:
沈煜斌(1998—),男,硕士生;电子信箱:shenyubin1998@sjtu.edu.cn。
基金资助:
SHEN Yubin(), OU Xiwen, LIU Song()
Received:
2023-10-19
Accepted:
2024-02-09
Online:
2024-04-28
Published:
2024-04-28
Contact:
LIU Song
E-mail:shenyubin1998@sjtu.edu.cn;liusong@xinhuamed.com.cn
Supported by:
摘要:
阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是一种常见的睡眠障碍,其病理生理机制复杂且尚未完全明了。该文介绍了自然OSA动物模型、直接OSA动物模型以及间接OSA动物模型,分别分析了它们在模拟OSA病理生理过程中的优缺点。自然OSA动物模型主要关注自发性上气道阻塞,直接OSA动物模型通过直接阻塞引起OSA,而间接OSA动物模型主要通过模拟慢性间歇性低氧以及睡眠剥夺来研究其对机体的影响。这3类模型在研究OSA的病理生理学机制和开发治疗新方法方面发挥了重要作用,但它们也存在一些局限性和挑战。未来的研究方向包括非侵入性监测技术的发展、建立OSA联合模型以及基因编辑技术的应用,以期更全面、精确地模拟人类OSA的复杂性和多样性,为理解其机制和开发新的治疗方法提供更多信息。
中图分类号:
沈煜斌, 欧茜文, 刘松. 阻塞性睡眠呼吸暂停的动物模型研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 501-508.
SHEN Yubin, OU Xiwen, LIU Song. Progress in animal model research on obstructive sleep apnea[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 501-508.
Classification | Name | Advantage | Limitation | Applicable scenario |
---|---|---|---|---|
Natural OSA animal model | Obese pigs, English bulldogs, Obese Zucker rats, New Zealand Obese mice | No intervention required; closer to actual conditions | Difficult to fully control variables, adjust research conditions, and cover features closely related to unique human lifestyles and environmental factors | Studying the physiological, genetic, metabolic impacts and the long-term effects of chronic OSA |
Direct OSA animal model | OSA animal model with tracheal intubation | Consistently inducing the same degree of upper airway narrowing; easy to control the frequency and duration of apnea events | Technical difficulty and high cost; invasive models are prone to stress responses, and the airway obstruction plane differs from humans | Studying the acute physiological effects of short-term OSA; not suitable for large-scale studies |
OSA animal model of airway collapse induced by negative pressure | Simple, stable, and repeatable operation; no need for complex surgeries or equipment | Unable to stably induce the same degree of upper airway collapse | Researching the chronic impacts of long-term OSA, such as the development of cardiovascular diseases | |
OSA animal model with filling material injection | Relatively simple operation; spontaneous chronic IH pathophysiological changes occur; imaging can be used as support | Animals show individual differences, poor repeatability; potential for injection site infections | Studying the effects of anatomical and functional changes in the upper airway on OSA | |
Chemically induced OSA animal model | Minimally invasive, few surgery-related complications; high repeatability | High technical requirements and complexity in operation; requiring precise and skilled experimental techniques and high-end experimental equipment | Researching the pathophysiological characteristics of OSA during specific sleep stages | |
Special mask ventilation blockage method, Head-enclosed ventilation blockage method, oral-nasal airbag ventilation blockage method | Controllable ventilation and occlusion times | High equipment requirements; difficult operation; insufficient precision in control; restricting animal free movement | Not suitable for more complex or larger-scale studies | |
Indirect OSA animal model | Chronic IH model | No anesthesia required; non-invasive; precise control of gas concentrations within the chamber; safe and repeatable modeling process | Unable to simulate upper airway narrowing or collapse; CO2 partial pressure changes do not match actual conditions | Suitable for mechanistic research, long-term studies, and large-scale physiological and pharmacological research |
Sleep deprivation model | Ability to adjust the intensity and duration of sleep deprivation as needed; facilitating a repeatable process | Introduction of additional stress factors; possibility of leading to a certain degree of exercise deprivation effect, confinement, and fixation stress | Researching the impact of decreased sleep quality and disordered sleep structure on cognitive function, learning and memory, emotional regulation, and metabolic diseases in OSA, and the treatment effects of improving sleep quality on these diseases |
表1 OSA模型优缺点对比
Tab 1 Comparison of advantages and disadvantages of each OSA model
Classification | Name | Advantage | Limitation | Applicable scenario |
---|---|---|---|---|
Natural OSA animal model | Obese pigs, English bulldogs, Obese Zucker rats, New Zealand Obese mice | No intervention required; closer to actual conditions | Difficult to fully control variables, adjust research conditions, and cover features closely related to unique human lifestyles and environmental factors | Studying the physiological, genetic, metabolic impacts and the long-term effects of chronic OSA |
Direct OSA animal model | OSA animal model with tracheal intubation | Consistently inducing the same degree of upper airway narrowing; easy to control the frequency and duration of apnea events | Technical difficulty and high cost; invasive models are prone to stress responses, and the airway obstruction plane differs from humans | Studying the acute physiological effects of short-term OSA; not suitable for large-scale studies |
OSA animal model of airway collapse induced by negative pressure | Simple, stable, and repeatable operation; no need for complex surgeries or equipment | Unable to stably induce the same degree of upper airway collapse | Researching the chronic impacts of long-term OSA, such as the development of cardiovascular diseases | |
OSA animal model with filling material injection | Relatively simple operation; spontaneous chronic IH pathophysiological changes occur; imaging can be used as support | Animals show individual differences, poor repeatability; potential for injection site infections | Studying the effects of anatomical and functional changes in the upper airway on OSA | |
Chemically induced OSA animal model | Minimally invasive, few surgery-related complications; high repeatability | High technical requirements and complexity in operation; requiring precise and skilled experimental techniques and high-end experimental equipment | Researching the pathophysiological characteristics of OSA during specific sleep stages | |
Special mask ventilation blockage method, Head-enclosed ventilation blockage method, oral-nasal airbag ventilation blockage method | Controllable ventilation and occlusion times | High equipment requirements; difficult operation; insufficient precision in control; restricting animal free movement | Not suitable for more complex or larger-scale studies | |
Indirect OSA animal model | Chronic IH model | No anesthesia required; non-invasive; precise control of gas concentrations within the chamber; safe and repeatable modeling process | Unable to simulate upper airway narrowing or collapse; CO2 partial pressure changes do not match actual conditions | Suitable for mechanistic research, long-term studies, and large-scale physiological and pharmacological research |
Sleep deprivation model | Ability to adjust the intensity and duration of sleep deprivation as needed; facilitating a repeatable process | Introduction of additional stress factors; possibility of leading to a certain degree of exercise deprivation effect, confinement, and fixation stress | Researching the impact of decreased sleep quality and disordered sleep structure on cognitive function, learning and memory, emotional regulation, and metabolic diseases in OSA, and the treatment effects of improving sleep quality on these diseases |
1 | SALZANO G, MAGLITTO F, BISOGNO A, et al. Obstructive sleep apnoea/hypopnoea syndrome: relationship with obesity and management in obese patients[J]. Acta Otorhinolaryngol Ital, 2021, 41(2): 120-130. |
2 | BENJAFIELD A V, AYAS N T, EASTWOOD P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. |
3 | CHEN X L, WANG R, ZEE P, et al. Racial/ethnic differences in sleep disturbances: the multi-ethnic study of atherosclerosis (MESA)[J]. Sleep, 2015, 38(6): 877-888. |
4 | YOUNG T, SKATRUD J, PEPPARD P E. Risk factors for obstructive sleep apnea in adults[J]. JAMA, 2004, 291(16): 2013-2016. |
5 | LÉVY P, KOHLER M, MCNICHOLAS W T, et al. Obstructive sleep apnoea syndrome[J]. Nat Rev Dis Primers, 2015, 1: 15015. |
6 | KAPUR V K, AUCKLEY D H, CHOWDHURI S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American academy of sleep medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3): 479-504. |
7 | LV R J, LIU X Y, ZHANG Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218. |
8 | HENDRICKS J C, KLINE L R, KOVALSKI R J, et al. The English bulldog: a natural model of sleep-disordered breathing[J]. J Appl Physiol, 1987, 63(4): 1344-1350. |
9 | CHOPRA S, POLOTSKY V Y, JUN J C. Sleep apnea research in animals. Past, present, and future[J]. Am J Respir Cell Mol Biol, 2016, 54(3): 299-305. |
10 | LONERGAN R P 3rd, WARE J C, ATKINSON R L, et al. Sleep apnea in obese miniature pigs[J]. J Appl Physiol, 1998, 84(2): 531-536. |
11 | BRENNICK M J, PICKUP S, CATER J R, et al. Phasic respiratory pharyngeal mechanics by magnetic resonance imaging in lean and obese zucker rats[J]. Am J Respir Crit Care Med, 2006, 173(9): 1031-1037. |
12 | HERNANDEZ A B, KIRKNESS J P, SMITH P L, et al. Novel whole body plethysmography system for the continuous characterization of sleep and breathing in a mouse[J]. J Appl Physiol, 2012, 112(4): 671-680. |
13 | CROSSLAND R F, DURGAN D J, LLOYD E E, et al. A new rodent model for obstructive sleep apnea: effects on ATP-mediated dilations in cerebral arteries[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305(4): R334-R342. |
14 | KING E D, O'DONNELL C P, SMITH P L, et al. A model of obstructive sleep apnea in normal humans. Role of the upper airway[J]. Am J Respir Crit Care Med, 2000, 161(6): 1979-1984. |
15 | LIU Y Y, GAO L, LV W N, et al. Pathologic and hemodynamic changes of common carotid artery in obstructive sleep apnea hypopnea syndrome in a porcine model[J]. Turk J Med Sci, 2019, 49(3): 939-944. |
16 | LEBEK S, HEGNER P, SCHACH C, et al. A novel mouse model of obstructive sleep apnea by bulking agent-induced tongue enlargement results in left ventricular contractile dysfunction[J]. PLoS One, 2020, 15(12): e0243844. |
17 | PHILIP P, GROSS C E, TAILLARD J, et al. An animal model of a spontaneously reversible obstructive sleep apnea syndrome in the monkey[J]. Neurobiol Dis, 2005, 20(2): 428-431. |
18 | QIAN L, RAWASHDEH O, KASAS L, et al. Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer's disease[J]. Nat Commun, 2022, 13(1): 6543. |
19 | 张秀娟, 李庆云, 许华俊. 睡眠呼吸暂停模式间歇低氧动物模型的建立及应用[J]. 中华结核和呼吸杂志, 2011, 34(10): 777-779. |
ZHANG X J, LI Q Y, XU H J. Establishment and application of chronic intermittent hypoxia animal model mimicking sleep apnea[J]. Zhonghua Jie He He Hu Xi Za Zhi, 2011, 34(10): 777-779. | |
20 | MESARWI O A, SHARMA E V, JUN J C, et al. Metabolic dysfunction in obstructive sleep apnea: a critical examination of underlying mechanisms[J]. Sleep Biol Rhythms, 2015, 13(1): 2-17. |
21 | JUN J C, SHIN M K, YAO Q L, et al. Thermoneutrality modifies the impact of hypoxia on lipid metabolism[J]. Am J Physiol Endocrinol Metab, 2013, 304(4): E424-E435. |
22 | ZAMORE Z, VEASEY S C. Neural consequences of chronic sleep disruption[J]. Trends Neurosci, 2022, 45(9): 678-691. |
23 | VILLAFUERTE G, MIGUEL-PUGA A, RODRÍGUEZ E M, et al. Sleep deprivation and oxidative stress in animal models: a systematic review[J]. Oxid Med Cell Longev, 2015, 2015: 234952. |
24 | SENEL M, DERVISEVIC E, ALHASSEN S, et al. Microfluidic electrochemical sensor for cerebrospinal fluid and blood dopamine detection in a mouse model of Parkinson's disease[J]. Anal Chem, 2020, 92(18): 12347-12355. |
25 | PLA L, BERDÚN S, MIR M, et al. Non-invasive monitoring of pH and oxygen using miniaturized electrochemical sensors in an animal model of acute hypoxia[J]. J Transl Med, 2021, 19(1): 53. |
26 | QIU X H, LI L L, WEI J Y, et al. The protective role of Nrf2 on cognitive impairment in chronic intermittent hypoxia and sleep fragmentation mice[J]. Int Immunopharmacol, 2023, 116: 109813. |
27 | LIU W, ZHAO D, WU X F, et al. Rapamycin ameliorates chronic intermittent hypoxia and sleep deprivation-induced renal damage via the mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling pathway[J]. Bioengineered, 2022, 13(3): 5537-5550. |
28 | CAMPOS A I, INGOLD N, HUANG Y R, et al. Discovery of genomic loci associated with sleep apnea risk through multi-trait GWAS analysis with snoring[J]. Sleep, 2023, 46(3): zsac308. |
29 | XU H J, LIU F, LI Z Q, et al. Genome-wide association study of obstructive sleep apnea and objective sleep-related traits identifies novel risk loci in Han Chinese individuals[J]. Am J Respir Crit Care Med, 2022, 206(12): 1534-1545. |
30 | CHEN H, CADE B E, GLEASON K J, et al. Multiethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea-related quantitative trait locus in men[J]. Am J Respir Cell Mol Biol, 2018, 58(3): 391-401. |
[1] | 高怡青, 彭裕, 许华俊, 易红良, 关建, 殷善开. 全球阻塞性睡眠呼吸暂停指南质量评价[J]. 上海交通大学学报(医学版), 2024, 44(2): 237-249. |
[2] | 周祥, 潘金锡, 张钦杰, 李蕴, 陈颖, 谭皓月, 彭飞, 黄穗, 谭治平, 吴皓, 贾欢. 听觉脑干植入豚鼠模型构建的标准化步骤及评价[J]. 上海交通大学学报(医学版), 2022, 42(5): 583-590. |
[3] | 袁笑, 田野野, 薛峥. 6-OHDA诱导的帕金森病小鼠表现出以p16Ink4a上调和星形胶质细胞衰老为特征的衰老表型[J]. 上海交通大学学报(医学版), 2021, 41(7): 876-883. |
[4] | 陈骁楠, 张俊峰, 王长谦, 张绘莉. 小鼠射血分数保留心力衰竭模型的建立[J]. 上海交通大学学报(医学版), 2021, 41(5): 565-570. |
[5] | 付静怡, 汪雷, 杨异. 急性肺损伤动物模型建立的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(5): 690-694. |
[6] | 康建华1,李明杰1,栾培培2,陈源文3,彭文辉2,简蔚霞1. 西方饮食联合小剂量四氯化碳构建非酒精性脂肪性肝炎小鼠模型研究[J]. 上海交通大学学报(医学版), 2020, 40(5): 590-597. |
[7] | 陈淑梅,吴佳欐,李晓艳. 阻塞性睡眠呼吸暂停低通气综合征患儿血压与儿茶酚胺水平的关系研究[J]. 上海交通大学学报(医学版), 2019, 39(12): 1437-. |
[8] | 覃 倩1,李 彤2,尤剑鹏3,吕 超1,张莉娟1,张 曼2. 盆腔炎鼠类模型构建与评价[J]. 上海交通大学学报(医学版), 2019, 39(10): 1218-. |
[9] | 曹博军 1,王小文 2,邹榕江 3,吕志前 1. 新西兰兔静脉移植内膜增生模型的构建[J]. 上海交通大学学报(医学版), 2018, 38(12): 1435-. |
[10] | 应晨 1,刘彩虹 2,胡家安 2,江石湖 3,徐志红 2,孙璟 2. 阻塞性睡眠呼吸暂停低通气综合征合并非酒精性脂肪性肝病患者血清脂肪代谢相关激素水平的研究[J]. 上海交通大学学报(医学版), 2018, 38(10): 1203-. |
[11] | 王佩,许婷婷,赵青,王振. 基因敲除动物模型在强迫症研究中的应用与进展[J]. 上海交通大学学报(医学版), 2017, 37(9): 1292-. |
[12] | 黄东东,沃璐璐,阮昕,许雅芊,龚一鸣,杨琳希,李雪川,康月苧,贺明 . 新型酒精性肝病小鼠模型的建立[J]. 上海交通大学学报(医学版), 2017, 37(7): 906-. |
[13] | 王建茹,刘 萍. ApoE -/- 和LDLR -/- 动脉粥样硬化模型小鼠差异性的研究进展#br#[J]. 上海交通大学学报(医学版), 2017, 37(7): 1033-. |
[14] | 沙朦,夏强. 胆管细胞癌动物模型的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(3): 407-. |
[15] | 孙雯雯,阮玉凤,连鹏,应晨,胡家安,徐志红,孙璟. 阻塞性睡眠呼吸暂停低通气综合征对非酒精性脂肪性肝病的影响[J]. 上海交通大学学报(医学版), 2016, 36(5): 707-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||