
上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (4): 494-500.doi: 10.3969/j.issn.1674-8115.2024.04.010
收稿日期:2023-10-18
接受日期:2024-01-31
出版日期:2024-04-28
发布日期:2024-04-28
通讯作者:
卢言慧,电子信箱:luyanhui@bjmu.edu.cn。作者简介:杜亚格(1995—),女,博士生;电子信箱:yuanfang166@163.com。
基金资助:
DU Yage1(
), LU Yanhui1(
), AN Yu2, SONG Ying1, ZHENG Jie1
Received:2023-10-18
Accepted:2024-01-31
Online:2024-04-28
Published:2024-04-28
Contact:
LU Yanhui, E-mail: luyanhui@bjmu.edu.cn.Supported by:摘要:
2型糖尿病进展后期可并发轻度认知功能障碍,并逐步发展为痴呆。糖尿病认知功能障碍(diabetic cognitive impairment,DCI)是糖尿病慢性并发症,相关发病机制仍有待阐明。研究发现肠道菌群失衡可通过“微生物-肠-脑轴”影响中枢神经系统,促进认知功能障碍的发生与发展,因此调控肠道菌群可能成为极具潜力的DCI的防治手段。基于此,该文梳理了肠道菌群在DCI中的作用机制,并总结了益生菌、粪菌移植、饮食与营养素、中医药等靶向肠道菌群的干预方法改善糖尿病相关的认知障碍、糖脂代谢和炎症的实验研究,从而为肠道菌群靶向干预DCI的临床应用提供参考。
中图分类号:
杜亚格, 卢言慧, 安宇, 宋颖, 郑婕. 肠道菌群在糖尿病认知功能障碍中的作用机制及靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 494-500.
DU Yage, LU Yanhui, AN Yu, SONG Ying, ZHENG Jie. Research progress in mechanisms of gut microbiota in diabetic cognitive impairment and its targeted intervention[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 494-500.
| 1 | 中华医学会内分泌学分会, 余学锋, 赵家军, 等. 糖尿病患者认知功能障碍专家共识[J]. 中华糖尿病杂志, 2021, 13(7): 678-694. |
| Chinese Society of Endocrinology, YU X F, ZHAO J J, et al. Expert consensus on diabetic cognitive dysfunction[J]. Chinese Journal of Diabetes Mellitus, 2021, 13(7): 678-694. | |
| 2 | 张擎, 王旭, 姚文强. 基于“气化”理论探讨自噬对糖尿病认知功能障碍的作用机制[J]. 辽宁中医杂志, 2024, 51(3): 1-7. |
| ZHANG Q, WANG X, YAO W Q. Study on the mechanism of autophagy on diabetic cognitive impairment based on the theory of "Qi" [J]. Liaoning Journal of Traditional Chinese Medicine, 2024, 51(3): 1-7. | |
| 3 | LIU Z G, DAI X S, ZHANG H B, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J]. Nat Commun, 2020, 11(1): 855. |
| 4 | ZHANG Y Y, LU S R, YANG Y, et al. The diversity of gut microbiota in type 2 diabetes with or without cognitive impairment[J]. Aging Clin Exp Res, 2021, 33(3): 589-601. |
| 5 | HUANG H Y, ZHAO T, LI J C, et al. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction[J]. Appl Microbiol Biotechnol, 2023, 107(23): 7251-7267. |
| 6 | DU Y G, LI X Y, AN Y, et al. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: a cross-sectional, non-controlled study[J]. Front Nutr, 2022, 9: 930626. |
| 7 | ZHANG J W, ZHANG Y X, YUAN Y, et al. Gut microbiota alteration is associated with cognitive deficits in genetically diabetic (db/db) mice during aging[J]. Front Aging Neurosci, 2021, 13: 815562. |
| 8 | YANG Y J, ZHONG Z Q, WANG B J, et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila[J]. Neuropsychopharmacology, 2019, 44(12): 2054-2064. |
| 9 | YU F, HAN W, ZHAN G F, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice[J]. Aging, 2019, 11(10): 3262-3279. |
| 10 | 张薇薇. 2型糖尿病合并认知障碍的老年患者血液标志物的临床研究[D]. 济南: 山东大学, 2020. |
| ZHANG W W. Clinical research on the expression of biomarkers in blood in elderly patients with type 2 diabetes mellitus and cognitive impairment[D]. Ji Nan: Shandong University, 2020. | |
| 11 | LI Z H, JIANG Y Y, LONG C Y, et al. The gut microbiota-astrocyte axis: implications for type 2 diabetic cognitive dysfunction[J]. CNS Neurosci Ther, 2023, 29(Suppl 1): 59-73. |
| 12 | SHEN H P, GUAN Q B, ZHANG X L, et al. New mechanism of neuroinflammation in Alzheimer's disease: the activation of NLRP3 inflammasome mediated by gut microbiota[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 100: 109884. |
| 13 | CHEN J, DING X Q, WU R Y, et al. Novel sesquiterpene glycoside from loquat leaf alleviates type 2 diabetes mellitus combined with nonalcoholic fatty liver disease by improving insulin resistance, oxidative stress, inflammation, and gut microbiota composition[J]. J Agric Food Chem, 2021, 69(47): 14176-14191. |
| 14 | RUTSCH A, KANTSJÖ J B, RONCHI F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology[J]. Front Immunol, 2020, 11: 604179. |
| 15 | WU S C, LIU X, JIANG R L, et al. Roles and mechanisms of gut microbiota in patients with Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 650047. |
| 16 | LIU P F, LI H, WANG Y Q, et al. Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats[J]. Front Pharmacol, 2020, 11: 535. |
| 17 | JAYARAJ R L, AZIMULLAH S, BEIRAM R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators[J]. Saudi J Biol Sci, 2020, 27(2): 736-750. |
| 18 | XIE L, HELMERHORST E, TADDEI K, et al. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor[J]. J Neurosci, 2002, 22(10): RC221. |
| 19 | ALLIN K H, TREMAROLI V, CAESAR R, et al. Aberrant intestinal microbiota in individuals with prediabetes[J]. Diabetologia, 2018, 61(4): 810-820. |
| 20 | TAKEUCHI T, KUBOTA T, NAKANISHI Y, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance[J]. Nature, 2023, 621(7978): 389-395. |
| 21 | CHATELIER E L, NIELSEN T, QIN J J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546. |
| 22 | 吴梦竹, 张梨, 李廷林, 等. 基于心与小肠相表里探析肠道菌群与糖尿病认知障碍的关联[J]. 中国实验方剂学杂志, 2021, 27(3): 231-237. |
| WU M Z, ZHANG L, LI T L, et al. Analysis on relationship between intestinal flora and diabetes cognitive impairment based on "paired relationship between heart and small intestine"[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(3): 231-237. | |
| 23 | PLANEL E, TATEBAYASHI Y, MIYASAKA T, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms[J]. J Neurosci, 2007, 27(50): 13635-13648. |
| 24 | MA H L, JIANG T, TANG W X, et al. Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice[J]. Clin Sci, 2020, 134(16): 2161-2175. |
| 25 | SALEM M A, BUDZYŃSKA B, KOWALCZYK J, et al. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer's disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β- catenin, AMPK/mTOR signaling pathways[J]. Toxicol Appl Pharmacol, 2021, 429: 115697. |
| 26 | HARACH T, MARUNGRUANG N, DUTHILLEUL N, et al. Reduction of Aβ amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J]. Sci Rep, 2017, 7: 41802. |
| 27 | 朱莉, 幸佳佳, 魏娟芳, 等. 短链脂肪酸在神经退行性疾病中的相关机制研究进展[J]. 中国全科医学, 2023, 26(24): 3061-3066. |
| ZHU L, XING J J, WEI J F, et al. Research advances in the mechanism of short-chain fatty acids in neurodegenerative diseases[J]. Chinese General Practice, 2023, 26(24): 3061-3066. | |
| 28 | ZHANG S S, XUE R, HU R Z. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction[J]. Eur J Nutr, 2020, 59(4): 1295-1311. |
| 29 | SUN J, XU J X, LING Y, et al. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice[J]. Transl Psychiatry, 2019, 9(1): 189. |
| 30 | 裴莹, 卢燕, 李惠子, 等. 肠道菌群与阿尔茨海默病发生发展关系及防治方法的研究进展[J]. 北京医学, 2022, 44(4): 336-340. |
| PEI Y, LU Y, LI H Z, et al. Research progress on the relationship between gut microbiota and the occurrence and development of Alzheimer's disease and prevention and treatment methods[J]. Beijing Medical Journal, 2022, 44(4): 336-340. | |
| 31 | 梁仙志, 廖旻晶, 王宏波, 等. 肠道微生物群与部分人类疾病的研究进展[J]. 基因组学与应用生物学, 2020, 39(12): 5874-5880. |
| LIANG X Z, LIAO M J, WANG H B, et al. Research progress on the relation of human gut microbiota and some diseases[J]. Genomics and Applied Biology, 2020, 39(12): 5874-5880. | |
| 32 | DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7): 1096-1103. |
| 33 | VAN DER LUGT B, VAN BEEK A A, AALVINK S, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice[J]. Immun Ageing, 2019, 16: 6. |
| 34 | 冀瑶瑶. 副干酪乳杆菌Jlus66对肥胖小鼠糖脂代谢紊乱及认知障碍的改善作用研究[D]. 长春: 吉林大学, 2022. |
| JI Y Y. Improvement of Lactobacillus paracasei Jlus66 on glucose and lipid metabolism disorders and cognitive impairment in obese mice[D]. Changchun: Jilin University, 2022. | |
| 35 | HOSOMI K, SAITO M, PARK J, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota[J]. Nat Commun, 2022, 13(1): 4477. |
| 36 | ZHANG P P, LI L L, HAN X, et al. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice[J]. Acta Pharmacol Sin, 2020, 41(5): 678-685. |
| 37 | SUN Y, BAPTISTA L C, ROBERTS L M, et al. The gut microbiome as a therapeutic target for cognitive impairment[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(7): 1242-1250. |
| 38 | HERNANDEZ A R, HERNANDEZ C M, TRUCKENBROD L M, et al. Age and ketogenic diet have dissociable effects on synapse-related gene expression between hippocampal subregions[J]. Front Aging Neurosci, 2019, 11: 239. |
| 39 | HUSSEIN H M, ELYAMANY M F, RASHED L A, et al. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1[J]. Eur J Pharm Sci, 2022, 170: 106105. |
| 40 | ORKABY A R, CHO K, CORMACK J, et al. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes[J]. Neurology, 2017, 89(18): 1877-1885. |
| 41 | MA X Y, XIAO W C, LI H, et al. Metformin restores hippocampal neurogenesis and learning and memory via regulating gut microbiota in the obese mouse model[J]. Brain Behav Immun, 2021, 95: 68-83. |
| 42 | LEE H, LEE Y, KIM J, et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice[J]. Gut Microbes, 2018, 9(2): 155-165. |
| 43 | WANG X Y, SUN G Q, FENG T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29(10): 787-803. |
| 44 | LI Y, WU M Y, KONG M M, et al. Impact of donepezil supplementation on Alzheimer's disease-like pathology and gut microbiome in APP/PS1 mice[J]. Microorganisms, 2023, 11(9): 2306. |
| 45 | JO J K, LEE G, NGUYEN C D, et al. Effects of donepezil treatment on brain metabolites, gut microbiota, and gut metabolites in an amyloid β-induced cognitive impairment mouse pilot model[J]. Molecules, 2022, 27(19): 6591. |
| 46 | 闫斌. 兔仙合剂对糖尿病认知功能障碍大鼠的作用及机制初探[D]. 北京: 中国医学科学院, 2020. |
| YAN B. Preliminary study on the effect and mechanism of Tu-Xian mixture on diabetic cognitive impairment in rats[D]. Beijing: Chinese Academy of Medical Sciences, 2020. | |
| 47 | ZHENG Y F, ZHOU X, WANG C X, et al. Effect of dendrobium mixture in alleviating diabetic cognitive impairment associated with regulating gut microbiota[J]. Biomedecine Pharmacother, 2022, 149: 112891. |
| 48 | BI T T, FENG R Q, ZHAN L B, et al. ZiBuPiYin recipe prevented and treated cognitive decline in ZDF rats with diabetes-associated cognitive decline via microbiota-gut-brain axis dialogue[J]. Front Cell Dev Biol, 2021, 9: 651517. |
| 49 | SHI J W, YIN Q S, ZHANG L, et al. Zi Shen Wan Fang attenuates neuroinflammation and cognitive function via remodeling the gut microbiota in diabetes-induced cognitive impairment mice[J]. Front Pharmacol, 2022, 13: 898360. |
| 50 | ZHENG Y F, ZHOU X, WANG C X, et al. Effect of tanshinone ⅡA on gut microbiome in diabetes-induced cognitive impairment[J]. Front Pharmacol, 2022, 13: 890444. |
| 51 | HIGARZA S G, ARBOLEYA S, ARIAS J L, et al. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats[J]. Gut Microbes, 2021, 13(1): 1-20. |
| 52 | ZHU G S, GUO M, ZHAO J X, et al. Bifidobacterium breve intervention combined with environmental enrichment alleviates cognitive impairment by regulating the gut microbiota and microbial metabolites in Alzheimer's disease mice[J]. Front Immunol, 2022, 13: 1013664. |
| 53 | KANG S S, JERALDO P R, KURTI A, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition[J]. Mol Neurodegener, 2014, 9: 36. |
| 54 | MOHAMMADI M, ZARE Z. Effects of treadmill exercise on cognitive functions and anxiety-related behaviors in ovariectomized diabetic rats[J]. Physiol Behav, 2020, 224: 113021. |
| [1] | 黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 792-799. |
| [2] | 曹明明, 王辉, 尹雅芙. 帕金森病认知功能障碍影像标志物的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(5): 646-652. |
| [3] | 连明珠, 张常晓, 盛凯, 郭梦, 方姝予. 老年营养风险指数对住院老年2型糖尿病患者发生肺部感染的预测价值[J]. 上海交通大学学报(医学版), 2025, 45(4): 452-458. |
| [4] | 林祎嘉, 程丽珍, 胡廷军, 苗雅. 基于孟德尔随机化法的2型糖尿病与认知障碍因果关系研究[J]. 上海交通大学学报(医学版), 2025, 45(2): 204-210. |
| [5] | 陆佳萍, 刘醒, 张林杉, 赵琳, 张敏, 李小英, 刘玥隽. 腹部脂肪面积与2型糖尿病患者胰岛β细胞第一时相分泌功能的关系[J]. 上海交通大学学报(医学版), 2025, 45(1): 42-50. |
| [6] | 陈深册, 陈依明, 王凡, 张梦珂, 杨惟杰, 吕洞宾, 洪武. 饮食干预治疗抑郁相关症状的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(8): 1050-1055. |
| [7] | 刘美志, 王子杨, 姜雅宁, 弥萌, 孙永宁. 番泻苷A对2型糖尿病小鼠动脉粥样硬化斑块形成及5-羟色胺信号分子表达的影响[J]. 上海交通大学学报(医学版), 2024, 44(8): 991-998. |
| [8] | 夏西茜, 丁珂珂, 张慧恒, 彭旭飞, 孙昳旻, 唐雅珺, 汤晓芳. 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 839-846. |
| [9] | 张新燕, 李涵, 冉慧, 苏青, 张洪梅. 2型糖尿病患者血清SUMO1水平与高甘油三酯血症相关性研究[J]. 上海交通大学学报(医学版), 2024, 44(10): 1266-1272. |
| [10] | 马锦倩, 范翩翩, 郑涛, 张琳, 陈远志, 申剑, 欧阳凤秀. 孕妇肠道、阴道菌群和新生儿胎粪、胎皮脂菌群的相关性研究[J]. 上海交通大学学报(医学版), 2024, 44(1): 50-63. |
| [11] | 吴凌恒, 陈建雄, 张梦娇, 沙蕾, 曹萌萌, 沈崔琴, 杜联芳, 李朝军. 血糖控制不理想对2型糖尿病患者亚临床心肌收缩功能的影响研究[J]. 上海交通大学学报(医学版), 2023, 43(8): 1024-1031. |
| [12] | 李郡如, 欧阳彦, 谢静远. 肠道菌群在IgA肾病发病与治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1044-1048. |
| [13] | 高羽, 殷姗, 庞玥, 梁文懿, 刘玉敏. 大黄对大鼠体内肠道菌群-宿主共代谢作用的影响[J]. 上海交通大学学报(医学版), 2023, 43(8): 997-1007. |
| [14] | 温亚锦, 何雯, 韩晓, 张晓波. 不同严重程度支气管哮喘儿童肠道菌群差异的探索性分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 655-664. |
| [15] | 王洁仪, 郑丹, 郑晓皎, 贾伟, 赵爱华. 茶褐素生物学活性及其作用机制的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 768-774. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||