1 |
HALBROOK C J, LYSSIOTIS C A, PASCA DI MAGLIANO M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754.
|
2 |
QIAN Y Z, GONG Y T, FAN Z Y, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2020, 13(1): 130.
|
3 |
SINN M, BAHRA M, LIERSCH T, et al. CONKO-005: adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after R0 resection of pancreatic cancer: a multicenter randomized phase III trial[J]. J Clin Oncol, 2017, 35(29): 3330-3337.
|
4 |
PERKHOFER L, GOUT J, ROGER E, et al. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives[J]. Gut, 2021, 70(3): 606-617.
|
5 |
ENCARNACIÓN-ROSADO J, KIMMELMAN A C. Harnessing metabolic dependencies in pancreatic cancers[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 482-492.
|
6 |
HALBROOK C J, THURSTON G, BOYER S, et al. Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells[J]. Nat Cancer, 2022, 3(11): 1386-1403.
|
7 |
YIN X P, XU R Y, SONG J L, et al. Lipid metabolism in pancreatic cancer: emerging roles and potential targets[J]. Cancer Commun, 2022, 42(12): 1234-1256.
|
8 |
MENENDEZ J A, LUPU R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer, 2007, 7(10): 763-777.
|
9 |
AUCIELLO F R, BULUSU V, OON C, et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression[J]. Cancer Discov, 2019, 9(5): 617-627.
|
10 |
BIAN X L, LIU R, MENG Y, et al. Lipid metabolism and cancer[J]. J Exp Med, 2021, 218(1): e20201606.
|
11 |
JEONG D W, PARK J W, KIM K S, et al. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma[J]. Nat Commun, 2023, 14(1): 6370.
|
12 |
CHEN X M, LI L Z, LIU X H, et al. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis[J]. Life Sci, 2018, 203: 291-304.
|
13 |
SHEN C J, CHAN R H, LIN B W, et al. Oleic acid-induced metastasis of KRAS/p53-mutant colorectal cancer relies on concurrent KRAS activation and IL-8 expression bypassing EGFR activation[J]. Theranostics, 2023, 13(13): 4650-4666.
|
14 |
KUBO M, GOTOH K, EGUCHI H, et al. Impact of CD36 on chemoresistance in pancreatic ductal adenocarcinoma[J]. Ann Surg Oncol, 2020, 27(2): 610-619.
|
15 |
YE B Y, YANG G G, LI Y M, et al. ZNF143 in chromatin looping and gene regulation[J]. Front Genet, 2020, 11: 338.
|
16 |
YE B Y, SHEN W L, ZHANG C Y, et al. The role of ZNF143 overexpression in rat liver cell proliferation[J]. BMC Genomics, 2022, 23(1): 483.
|
17 |
CHEN X, FANG F, LIOU Y C, et al. Zfp143 regulates Nanog through modulation of Oct4 binding[J]. Stem Cells, 2008, 26(11): 2759-2767.
|
18 |
MYSLINSKI E, GÉRARD M A, KROL A, et al. A genome scale location analysis of human Staf/ZNF143-binding sites suggests a widespread role for human Staf/ZNF143 in mammalian promoters[J]. J Biol Chem, 2006, 281(52): 39953-39962.
|
19 |
NGONDO R P, CARBON P. ZNF143 is regulated through alternative 3'UTR isoforms[J]. Biochimie, 2014, 104: 137-146.
|
20 |
IZUMI H, WAKASUGI T, SHIMAJIRI S, et al. Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes[J]. Cancer Sci, 2010, 101(12): 2538-2545.
|
21 |
KAWATSU Y, KITADA S, URAMOTO H, et al. The combination of strong expression of ZNF143 and high MIB-1 labelling index independently predicts shorter disease-specific survival in lung adenocarcinoma[J]. Br J Cancer, 2014, 110(10): 2583-2592.
|
22 |
PAEK A R, MUN J Y, JO M J, et al. The role of ZNF143 in breast cancer cell survival through the NAD(P)H quinone dehydrogenase 1-p53-Beclin1 axis under metabolic stress[J]. Cells, 2019, 8(4): 296.
|
23 |
VERMA V, PAEK A R, CHOI B K, et al. Loss of zinc-finger protein 143 contributes to tumour progression by interleukin-8-CXCR axis in colon cancer[J]. J Cell Mol Med, 2019, 23(6): 4043-4053.
|
24 |
CARRER A, TREFELY S, ZHAO S, et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis[J]. Cancer Discov, 2019, 9(3): 416-435.
|
25 |
TADROS S, SHUKLA S K, KING R J, et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer[J]. Cancer Res, 2017, 77(20): 5503-5517.
|
26 |
LI J, GU D, LEE S S, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer[J]. Oncogene, 2016, 35(50): 6378-6388.
|
27 |
NATH A, LI I, ROBERTS L R, et al. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Sci Rep, 2015, 5: 14752.
|
28 |
PAN J M, FAN Z Y, WANG Z Q, et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β- catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 52.
|
29 |
MARTIN-MORENO J M, WILLETT W C, GORGOJO L, et al. Dietary fat, olive oil intake and breast cancer risk[J]. Int J Cancer, 1994, 58(6): 774-780.
|
30 |
YANG P, SU C X, LUO X, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway[J]. Cancer Lett, 2018, 438: 76-85.
|
31 |
NEUSCHWANDER-TETRI B A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites[J]. Hepatology, 2010, 52(2): 774-788.
|
32 |
HUNING L, KUNKEL G R. Two paralogous znf143 genes in zebrafish encode transcriptional activator proteins with similar functions but expressed at different levels during early development[J]. BMC Mol Cell Biol, 2020, 21(1): 3.
|
33 |
PAEK A R, LEE C H, YOU H J. A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells[J]. Mol Carcinog, 2014, 53(Suppl 1): E161-E168.
|
34 |
FENG Y L, CHEN D Q, VAZIRI N D, et al. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis[J]. Med Res Rev, 2020, 40(1): 54-78.
|
35 |
WEN Z, HUANG Z T, ZHANG R, et al. ZNF143 is a regulator of chromatin loop[J]. Cell Biol Toxicol, 2018, 34(6): 471-478.
|