| [1] |
MEISGEIER A, PIENKOHS S, DÜRRSCHNABEL F, et al. Rising incidence of severe maxillofacial space infections in Germany[J]. Clin Oral Investig, 2024, 28(5): 264.
|
| [2] |
ROBERTSON D D, SMITH A J. Significant increase in hospital admissions for the management of severe dental infection in England 2000-2020[J]. J Infect, 2021, 83(4): 496-522.
|
| [3] |
QIAN Y Z, GE Q, ZUO W, et al. Maxillofacial space infection experience and risk factors: a retrospective study of 222 cases[J]. Ir J Med Sci, 2021, 190(3): 1045-1053.
|
| [4] |
CARRASCOSA M F, CAYÓN HOYO S, ECHEVERRÍA SAN-SEBASTIÁN R, et al. Descending necrotizing mediastinitis from ludwig's angina: a life-threatening condition[J]. Eur J Clin Microbiol Infect Dis, 2022, 41(1): 181-183.
|
| [5] |
BULEK K, ZHAO J J, LIAO Y, et al. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis[J]. J Clin Invest, 2020, 130(8): 4218-4234.
|
| [6] |
LI Y, JIANG Q Z. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling[J]. Front Immunol, 2023, 14: 1128358.
|
| [7] |
YANG X Y, CHENG X Y, TANG Y T, et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure[J]. Immunity, 2019, 51(6): 983-996.e6.
|
| [8] |
BUSCH K, KNY M, HUANG N, et al. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 1653-1668.
|
| [9] |
VIGNERON C, PY B F, MONNERET G, et al. The double sides of NLRP3 inflammasome activation in sepsis[J]. Clin Sci (Lond), 2023, 137(5): 333-351.
|
| [10] |
WANG B L, ZHOU Q, QIAN W T, et al. The predictive value of laboratory tests in oro-maxillofacial infection of different severity[J]. Oral Dis, 2024, 30(3): 1695-1701.
|
| [11] |
HUANG L J, JIANG B, CAI X Y, et al. Multi-space infections in the head and neck: do underlying systemic diseases have a predictive role in life-threatening complications?[J]. J Oral Maxillofac Surg, 2015, 73(7): 1320.e1-1320.10.
|
| [12] |
LI X J, LIU H, GONG Z C, et al. The predictive value of interleukin-6 and neutrophil-lymphocyte ratio in patients with severe and extremely severe oral and maxillofacial space infections[J]. Biomed Res Int, 2021, 2021: 2615059.
|
| [13] |
KANG S J, KISHIMOTO T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms[J]. Exp Mol Med, 2021, 53(7): 1116-1123.
|
| [14] |
MILLS K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54.
|
| [15] |
PAIK S, KIM J K, SILWAL P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18(5): 1141-1160.
|
| [16] |
BARNETT K C, LI S R, LIANG K X, et al. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases[J]. Cell, 2023, 186(11): 2288-2312.
|
| [17] |
HATSCHER L, AMON L, HEGER L, et al. Inflammasomes in dendritic cells: friend or foe?[J]. Immunol Lett, 2021, 234: 16-32.
|
| [18] |
CUI J, OEHRL S, AHMAD F, et al. Detection of in vivo inflammasome activation for predicting sepsis mortality[J]. Front Immunol, 2021, 11: 613745.
|
| [19] |
CROS J, CAGNARD N, WOOLLARD K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors[J]. Immunity, 2010, 33(3): 375-386.
|
| [20] |
PATEL V K, WILLIAMS H, LI S C H, et al. Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels[J]. Atherosclerosis, 2017, 263: 15-23.
|
| [21] |
WONG K L, YEAP W H, TAI J J Y, et al. The three human monocyte subsets: implications for health and disease[J]. Immunol Res, 2012, 53(1/2/3): 41-57.
|
| [22] |
WILLIAMS H, MACK C, BARAZ R, et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences[J]. Int J Mol Sci, 2023, 24(10): 8757.
|
| [23] |
OŻAŃSKA A, SZYMCZAK D, RYBKA J. Pattern of human monocyte subpopulations in health and disease[J]. Scand J Immunol, 2020, 92(1): e12883.
|
| [24] |
KIM H K, GARCIA A B, SIU E, et al. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression[J]. FASEB J, 2019, 33(6): 6919-6932.
|
| [25] |
SUMAIYA K, LANGFORD D, NATARAJASEENIVASAN K, et al. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies[J]. Pharmacol Ther, 2022, 233: 108024.
|
| [26] |
BOZZA F A, GOMES R N, JAPIASSÚ A M, et al. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis[J]. Shock, 2004, 22(4): 309-313.
|
| [27] |
STIJLEMANS B, SCHOOVAERTS M, DE BAETSELIER P, et al. The role of MIF and IL-10 as molecular Yin-Yang in the modulation of the host immune microenvironment during infections: African trypanosome infections as a paradigm[J]. Front Immunol, 2022, 13: 865395.
|
| [28] |
蒋文, 石丁华, 何艳娟, 等. 降钙素原对脂多糖诱导的人脐静脉内皮细胞NLRP3和caspase-1表达的影响[J]. 中国当代儿科杂志, 2023, 25(5): 521-526.
|
|
JIANG W, SHI D H, HE Y J, et al. Effect of procalcitonin on lipopolysaccharide-induced expression of nucleotide-binding oligomerization domain-like receptor protein 3 and caspase-1 in human umbilical vein endothelial cells[J]. Chin J Contemp Pediatr, 2023, 25(5): 521-526.
|
| [29] |
WEI Z Y, ZHAN X Y, DING K X, et al. Dihydrotanshinone Ⅰ specifically inhibits NLRP3 inflammasome activation and protects against septic shock in vivo[J]. Front Pharmacol, 2021, 12: 750815.
|
| [30] |
TANUSEPUTERO S A, LIN M T, YEH S L, et al. Intravenous arginine administration downregulates NLRP3 inflammasome activity and attenuates acute kidney injury in mice with polymicrobial sepsis[J]. Mediators Inflamm, 2020, 2020: 3201635.
|
| [31] |
WEI S S, XIAO Z J, HUANG J, et al. Disulfiram inhibits oxidative stress and NLRP3 inflammasome activation to prevent LPS-induced cardiac injury[J]. Int Immunopharmacol, 2022, 105: 108545.
|
| [32] |
SHI X Y, LI T, LIU Y T, et al. HSF1 protects sepsis-induced acute lung injury by inhibiting NLRP3 inflammasome activation[J]. Front Immunol, 2022, 13: 781003.
|