| [1] |
ZAIDI M. Skeletal remodeling in health and disease[J]. Nat Med, 2007, 13(7): 791-801.
|
| [2] |
ZOU W, TEITELBAUM S L. Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis[J]. J Cell Biol, 2015, 208(1): 125-136.
|
| [3] |
LIU K W, WANG Z H, LIU J B, et al. Atsttrin regulates osteoblastogenesis and osteoclastogenesis through the TNFR pathway[J]. Commun Biol, 2023, 6(1): 1251.
|
| [4] |
TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642.
|
| [5] |
ZOFKOVA I, BLAHOS J. New molecules modulating bone metabolism: new perspectives in the treatment of osteoporosis[J]. Physiol Res, 2017, 66(Suppl 3): S341-S347.
|
| [6] |
QUINN J M W, SALEH H. Modulation of osteoclast function in bone by the immune system[J]. Mol Cell Endocrinol, 2009, 310(1/2): 40-51.
|
| [7] |
LEE S K, LORENZO J. Cytokines regulating osteoclast formation and function[J]. Curr Opin Rheumatol, 2006, 18(4): 411-418.
|
| [8] |
GRUBER R. Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone[J]. J Clin Periodontol, 2019, 46(Suppl 21): 52-69.
|
| [9] |
ROSSA C, EHMANN K, LIU M, et al. MKK3/6-p38 MAPK signaling is required for IL-1β and TNF-α-induced RANKL expression in bone marrow stromal cells[J]. J Interferon Cytokine Res, 2006, 26(10): 719-729.
|
| [10] |
OKAMOTO A, SUGI E, KOIZUMI Y, et al. Polyamine content of ordinary foodstuffs and various fermented foods[J]. Biosci Biotechnol Biochem, 1997, 61(9): 1582-1584.
|
| [11] |
ALI M A, POORTVLIET E, STRÖMBERG R, et al. Polyamines: total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (SNO)[J]. Food Nutr Res, 2011, 55: 55.
|
| [12] |
MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science, 2018, 359(6374): eaan2788.
|
| [13] |
YUAN H, WU S X, ZHOU Y F, et al. Spermidine inhibits joints inflammation and macrophage activation in mice with collagen-induced arthritis[J]. J Inflamm Res, 2021, 14: 2713-2721.
|
| [14] |
IEZAKI T, HINOI E, YAMAMOTO T, et al. Amelioration by the natural polyamine spermine of cartilage and bone destruction in rats with collagen-induced arthritis[J]. J Pharmacol Sci, 2012, 119(1): 107-111.
|
| [15] |
TSUJINAKA S, SODA K, KANO Y, et al. Spermine accelerates hypoxia-initiated cancer cell migration[J]. Int J Oncol, 2011, 38(2): 305-312.
|
| [16] |
TODA G, YAMAUCHI T, KADOWAKI T, et al. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis[J]. STAR Protoc, 2021, 2(1): 100246.
|
| [17] |
ZHANG J, ZHU L, PENG B. Effect of BioAggregate on osteoclast differentiation and inflammatory bone resorption in vivo[J]. Int Endod J, 2015, 48(11): 1077-1085.
|
| [18] |
FENG X, MCDONALD J M. Disorders of bone remodeling[J]. Annu Rev Pathol Mech Dis, 2011, 6: 121-145.
|
| [19] |
GU Q L, YANG H L, SHI Q. Macrophages and bone inflammation[J]. J Orthop Translat, 2017, 10: 86-93.
|
| [20] |
LIU R, LI X L, MA H, et al. Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1α upregulation and autophagy[J]. Free Radic Biol Med, 2020, 161: 339-350.
|
| [21] |
KHONGKARAT P, PHUWAPRAISIRISAN P, CHANCHAO C P. Phytochemical content, especially spermidine derivatives, presenting antioxidant and antilipoxygenase activities in Thai bee pollens[J]. PeerJ, 2022, 10: e13506.
|
| [22] |
FAN J J, FENG Z Y, CHEN N. Spermidine as a target for cancer therapy[J]. Pharmacol Res, 2020, 159: 104943.
|
| [23] |
XU T T, LI H, DAI Z, et al. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice[J]. Aging (Albany NY), 2020, 12(7): 6401-6414.
|
| [24] |
MIZUKAMI J, TAKAESU G, AKATSUKA H, et al. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6[J]. Mol Cell Biol, 2002, 22(4): 992-1000.
|
| [25] |
FUJIWARA T, ZHOU J, YE S, et al. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival[J]. Cell Death Dis, 2016, 7(7): e2300.
|
| [26] |
THOMAS D C. The phagocyte respiratory burst: historical perspectives and recent advances[J]. Immunol Lett, 2017, 192: 88-96.
|
| [27] |
GE X H, TANG P Y, RONG Y L, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury[J]. Redox Biol, 2021, 41: 101932.
|
| [28] |
YANG Z, MIN Z J, YU B. Reactive oxygen species and immune regulation[J]. Int Rev Immunol, 2020, 39(6): 292-298.
|
| [29] |
ZENGER S, HE W T, EK-RYLANDER B, et al. Differential expression of tartrate-resistant acid phosphatase isoforms 5a and 5b by tumor and stromal cells in human metastatic bone disease[J]. Clin Exp Metastasis, 2011, 28(1): 65-73.
|
| [30] |
GAI D Z, CHEN J R, STEWART J P, et al. CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation[J]. J Clin Invest, 2022, 132(18): e159527.
|
| [31] |
AKIRA S, TAKEDA K, KAISHO T. Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001, 2(8): 675-680.
|