| [1] |
Zhou H, Xu X, Yan W L, et al. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years[J]. Neurosci Bull, 2020, 36(9): 961-971.
|
| [2] |
Zhang Z C, Han J H. The first national prevalence of autism spectrum disorder in China[J]. Neurosci Bull, 2020, 36(9): 959-960.
|
| [3] |
Wang Y Q, Guo X X, Hong X M, et al. Association of mitochondrial DNA content, heteroplasmies and inter-generational transmission with autism[J]. Nat Commun, 2022, 13(1): 3790.
|
| [4] |
Rossignol D A, Frye R E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis[J]. Mol Psychiatry, 2012, 17(3): 290-314.
|
| [5] |
Khacho M, Harris R, Slack R S. Mitochondria as central regulators of neural stem cell fate and cognitive function[J]. Nat Rev Neurosci, 2019, 20(1): 34-48.
|
| [6] |
Rajan A, Fame R M. Brain development and bioenergetic changes[J]. Neurobiol Dis, 2024, 199: 106550.
|
| [7] |
Agostini M, Romeo F, Inoue S, et al. Metabolic reprogramming during neuronal differentiation[J]. Cell Death Differ, 2016, 23(9): 1502-1514.
|
| [8] |
Zheng X D, Boyer L, Jin M J, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation[J]. eLife, 2016, 5: e13374.
|
| [9] |
Garone C, de Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases[J]. J Transl Med, 2024, 22(1): 238.
|
| [10] |
O′Brien L C, Keeney P M, Bennett J P Jr. Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux[J]. Stem Cells Dev, 2015, 24(17): 1984-1994.
|
| [11] |
Iwata R, Casimir P, Vanderhaeghen P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis[J]. Science, 2020, 369(6505): 858-862.
|
| [12] |
Wang L H, Zhang T, Wang L, et al. Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission[J]. EMBO J, 2017, 36(10): 1330-1347.
|
| [13] |
Son G, Han J J. Roles of mitochondria in neuronal development[J]. BMB Rep, 2018, 51(11): 549-556.
|
| [14] |
Iwata R, Vanderhaeghen P. Regulatory roles of mitochondria and metabolism in neurogenesis[J]. Curr Opin Neurobiol, 2021, 69: 231-240.
|
| [15] |
Rangaraju V, Lewis T L Jr, Hirabayashi Y, et al. Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease[J]. J Neurosci, 2019, 39(42): 8200-8208.
|
| [16] |
Gao Q T, Tian R Y, Han H L, et al. PINK1-mediated Drp1S616 phosphorylation modulates synaptic development and plasticity via promoting mitochondrial fission[J]. Signal Transduct Target Ther, 2022, 7(1): 103.
|
| [17] |
Kang J S, Tian J H, Pan P Y, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation[J]. Cell, 2008, 132(1): 137-148.
|
| [18] |
Zhou B, Yu P P, Lin M Y, et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits[J]. J Cell Biol, 2016, 214(1): 103-119.
|
| [19] |
Zhao C M, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis[J]. Cell, 2008, 132(4): 645-660.
|
| [20] |
Frye R E. Mitochondrial dysfunction in autism spectrum disorder: unique abnormalities and targeted treatments[J]. Semin Pediatr Neurol, 2020, 35: 100829.
|
| [21] |
Zawadzka A, CieśLik M, Adamczyk A. The role of maternal immune activation in the pathogenesis of autism: a review of the evidence, proposed mechanisms and implications for treatment[J]. Int J Mol Sci, 2021, 22(21): 11516.
|
| [22] |
Anitha A, Nakamura K, Thanseem I, et al. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains[J]. Brain Pathol, 2013, 23(3): 294-302.
|
| [23] |
Tang G M, Gutierrez Rios P, Kuo S H, et al. Mitochondrial abnormalities in temporal lobe of autistic brain[J]. Neurobiol Dis, 2013, 54: 349-361.
|
| [24] |
Chauhan A, Gu F, Essa M M, et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism[J]. J Neurochem, 2011, 117(2): 209-220.
|
| [25] |
Castora F J. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92: 83-108.
|
| [26] |
Thibaudeau A, Schmitt K, FrançOis L, et al. Pharmacological modulation of developmental and synaptic phenotypes in human SHANK3 deficient stem cell-derived neuronal models[J]. Transl Psychiatry, 2024, 14(1): 249.
|
| [27] |
Mahalaxmi I, Subramaniam M D, Gopalakrishnan A V, et al. Dysfunction in mitochondrial electron transport chain complex I, pyruvate dehydrogenase activity, and mutations in ND1 and ND4 gene in autism spectrum disorder subjects from Tamil Nadu population, India[J]. Mol Neurobiol, 2021, 58(10): 5303-5311.
|
| [28] |
Frye R E, Rincon N, Mccarty P J, et al. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: a systematic review and meta-analysis[J]. Neurobiol Dis, 2024, 197: 106520.
|
| [29] |
Santos J L S, AraúJo C A, Rocha C A G, et al. Modeling autism spectrum disorders with induced pluripotent stem cell-derived brain organoids[J]. Biomolecules, 2023, 13(2): 260.
|
| [30] |
Frye R E, Lionnard L, Singh I, et al. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder[J]. Transl Psychiatry, 2021, 11(1): 527.
|
| [31] |
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder[J]. Mol Psychiatry, 2025, 30(2): 629-650.
|
| [32] |
Maier S, Nickel K, Lange T, et al. Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study[J]. Mol Autism, 2023, 14(1): 44.
|
| [33] |
Correia C, Coutinho A M, Diogo L, et al. Brief report: high frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene[J]. J Autism Dev Disord, 2006, 36(8): 1137-1140.
|
| [34] |
Nickel K, Menke M A, Endres D, et al. Altered markers of mitochondrial function in adults with autism spectrum disorder[J]. Autism Res, 2023, 16(11): 2125-2138.
|
| [35] |
Wolf C, LóPez Del Amo V, Arndt S, et al. Redox modifications of proteins of the mitochondrial fusion and fission machinery[J]. Cells, 2020, 9(4): 815.
|
| [36] |
Kim D I, Lee K H, Gabr A A, et al. Aβ- induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis[J]. Biochim Biophys Acta, 2016, 1863(11): 2820-2834.
|
| [37] |
Rojas-Charry L, Nardi L, Methner A, et al. Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders[J]. J Mol Med (Berl), 2021, 99(2): 161-178.
|
| [38] |
Gu F, Chauhan V, Chauhan A. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes[J]. Free Radic Biol Med, 2013, 65: 488-496.
|
| [39] |
Manivasagam T, Arunadevi S, Essa M M, et al. Role of oxidative stress and antioxidants in autism[J]. Adv Neurobiol, 2020, 24: 193-206.
|
| [40] |
Miao C L, Shen Y Z, Lang Y, et al. Biomimetic nanoparticles with enhanced rapamycin delivery for autism spectrum disorder treatment via autophagy activation and oxidative stress modulation[J]. Theranostics, 2024, 14(11): 4375-4392.
|
| [41] |
Wang J, FröHlich H, Torres F B, et al. Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome[J]. Proc Natl Acad Sci USA, 2022, 119(8): e2112852119.
|
| [42] |
Mccracken J T, Anagnostou E, Arango C, et al. Drug development for autism spectrum disorder (ASD): progress, challenges, and future directions[J]. Eur Neuropsychopharmacol, 2021, 48: 3-31.
|
| [43] |
Kent L, Gallagher L, Elliott H R, et al. An investigation of mitochondrial haplogroups in autism[J]. Am J Med Genet Neuropsychiatr Genet, 2008, 147B(6): 987-989.
|
| [44] |
Yardeni T, Cristancho A G, Mccoy A J, et al. An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes[J]. Proc Natl Acad Sci USA, 2021, 118(6): e2021429118.
|
| [45] |
Park J, Kim W J, Kim J, et al. Prenatal exposure to traffic-related air pollution and the DNA methylation in cord blood cells: MOCEH study[J]. Int J Environ Res Public Health, 2022, 19(6): 3292.
|
| [46] |
Picard M, Mcewen B S, Epel E S, et al. An energetic view of stress: focus on mitochondria[J]. Front Neuroendocrinol, 2018, 49: 72-85.
|
| [47] |
Leuthner T C, Meyer J N. Mitochondrial DNA mutagenesis: feature of and biomarker for environmental exposures and aging[J]. Curr Environ Health Rep, 2021, 8(4): 294-308.
|
| [48] |
Hong D, Iakoucheva L M. Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology[J]. Transl Psychiatry, 2023, 13(1): 58.
|
| [49] |
Alexander J F, Seua A V, Arroyo L D, et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits[J]. Theranostics, 2021, 11(7): 3109-3130.
|
| [50] |
Anashkina A A, Erlykina E I. Molecular mechanisms of aberrant neuroplasticity in autism spectrum disorders (review)[J]. Sovrem Tekhnologii Med, 2021, 13(1): 78-91.
|
| [51] |
Wang J F, Cao Y, Hou W L, et al. Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways[J]. Transl Psychiatry, 2023, 13(1): 17.
|