
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (12): 1636-1643.doi: 10.3969/j.issn.1674-8115.2025.12.009
• 综述 • 上一篇
收稿日期:2025-07-27
接受日期:2025-10-13
出版日期:2025-12-19
发布日期:2025-12-19
通讯作者:
黄展鹏,研究员,博士;电子信箱:huangzhp27@mail.sysu.edu.cn。基金资助:
DU Tailai1,2, HUANG Zhanpeng1,2(
)
Received:2025-07-27
Accepted:2025-10-13
Online:2025-12-19
Published:2025-12-19
Contact:
HUANG Zhanpeng, E-mail: huangzhp27@mail.sysu.edu.cn.Supported by:摘要:
心力衰竭(心衰)是心脏结构和功能异常导致的心输出量减少,不能满足机体代谢需求的一组复杂临床综合征。心肌能量代谢的改变是心衰的标志性事件之一,表现为能量底物利用改变、线粒体功能障碍及氧化应激加剧等特征,该变化在心衰进展中起关键作用。鉴于代谢机制对维持心脏功能的核心作用,靶向调节代谢通路的药物,即代谢调节药物,已成为极具前景的心衰治疗策略。脂肪酸氧化抑制剂(如哌克昔林)通过抑制肉碱棕榈酰转移酶Ⅰ/Ⅱ(carnitine palmitoyltransferase Ⅰ/Ⅱ,CPT1/2)减少脂肪酸β氧化,增强心脏能量代谢;3-酮脂酰辅酶A硫解酶(3-ketoacyl-coenzyme A thiolase,3-KAT)抑制剂(如曲美他嗪)可促进葡萄糖氧化,增强心肌能量供应;钠-葡萄糖协同转运蛋白2(sodium-glucose cotransporter 2,SGLT2)抑制剂(如恩格列净)除降糖作用外,还能通过多重机制改善心衰预后,但其确切的代谢机制仍需深入探索。此外,线粒体靶向肽(如伊拉米肽)通过稳定心磷脂、增强线粒体功能发挥心脏保护作用。尽管部分代谢调节药物已在临床前模型和早期临床试验中显示出潜力,但其长期疗效和安全性仍需大规模研究验证。该文综述心衰代谢调节药物的研究进展,旨在为心衰的基础研究探索和临床治疗转化提供借鉴。
中图分类号:
杜泰来, 黄展鹏. 心力衰竭代谢调节药物的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(12): 1636-1643.
DU Tailai, HUANG Zhanpeng. Advances in metabolic modulators as therapeutic agents for heart failure[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1636-1643.
| [1] | LOPASCHUK G D, KARWI Q G, TIAN R, et al. Cardiac energy metabolism in heart failure[J]. Circ Res, 2021, 128(10): 1487-1513. |
| [2] | NEUBAUER S. The failing heart: an engine out of fuel[J]. N Engl J Med, 2007, 356(11): 1140-1151. |
| [3] | BERGMAN G, ATKINSON L, METCALFE J, et al. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris[J]. Eur Heart J, 1980, 1(4): 247-253. |
| [4] | DRAKE-HOLLAND A J, PASSINGHAM J E. The effect of Oxfenicine on cardiac carbohydrate metabolism in intact dogs[J]. Basic Res Cardiol, 1983, 78(1): 19-27. |
| [5] | BACHMANN E, WEBER E. Biochemical mechanisms of oxfenicine cardiotoxicity[J]. Pharmacology, 1988, 36(4): 238-248. |
| [6] | SCHMIDT-SCHWEDA S, HOLUBARSCH C. First clinical trial with etomoxir in patients with chronic congestive heart failure[J]. Clin Sci (Lond), 2000, 99(1): 27-35. |
| [7] | HOLUBARSCH C J F, ROHRBACH M, KARRASCH M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study[J]. Clin Sci (Lond), 2007, 113(4): 205-212. |
| [8] | SCHWARZER M, FAERBER G, RUECKAUER T, et al. The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo[J]. Basic Res Cardiol, 2009, 104(5): 547-557. |
| [9] | ASHRAFIAN H, HOROWITZ J D, FRENNEAUX M P. Perhexiline[J]. Cardiovasc Drug Rev, 2007, 25(1): 76-97. |
| [10] | LEE L, CAMPBELL R, SCHEUERMANN-FREESTONE M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment[J]. Circulation, 2005, 112(21): 3280-3288. |
| [11] | ABOZGUIA K, ELLIOTT P, MCKENNA W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy[J]. Circulation, 2010, 122(16): 1562-1569. |
| [12] | BEADLE R M, WILLIAMS L K, KUEHL M, et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy[J]. JACC Heart Fail, 2015, 3(3): 202-211. |
| [13] | CAPPOLA T P. Perhexiline: lessons for heart failure therapeutics[J]. JACC Heart Fail, 2015, 3(3): 212-213. |
| [14] | KANTOR P F, LUCIEN A, KOZAK R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase[J]. Circ Res, 2000, 86(5): 580-588. |
| [15] | FRAGASSO G, SALERNO A, LATTUADA G, et al. Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure[J]. Heart, 2011, 97(18): 1495-1500. |
| [16] | MOMEN A, ALI M, KARMAKAR P K, et al. Effects of sustained-release trimetazidine on chronically dysfunctional myocardium of ischemic dilated cardiomyopathy: six months follow-up result[J]. Indian Heart J, 2016, 68(6): 809-815. |
| [17] | JATAIN S, KAPOOR A, SINHA A, et al. Metabolic manipulation in dilated cardiomyopathy: assessing the role of trimetazidine[J]. Indian Heart J, 2016, 68(6): 803-808. |
| [18] | TUUNANEN H, ENGBLOM E, NAUM A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy[J]. Circulation, 2008, 118(12): 1250-1258. |
| [19] | WINTER J L, CASTRO P F, QUINTANA J C, et al. Effects of trimetazidine in nonischemic heart failure: a randomized study[J]. J Card Fail, 2014, 20(3): 149-154. |
| [20] | CHANDLER M P, STANLEY W C, MORITA H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure[J]. Circ Res, 2002, 91(4): 278-280. |
| [21] | SABBAH H N, CHANDLER M P, MISHIMA T, et al. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure[J]. J Card Fail, 2002, 8(6): 416-422. |
| [22] | UNDROVINAS N A, MALTSEV V A, BELARDINELLI L, et al. Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure[J]. J Physiol Sci, 2010, 60(4): 245-257. |
| [23] | NIE J L, DUAN Q L, HE M Y, et al. Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na+ and Ca2+ handling[J]. J Cell Physiol, 2019, 234(7): 11587-11601. |
| [24] | WILLIAMS S, POURRIER M, MCAFEE D, et al. Ranolazine improves diastolic function in spontaneously hypertensive rats[J]. Am J Physiol Heart Circ Physiol, 2014, 306(6): H867-H881. |
| [25] | COPPINI R, FERRANTINI C, YAO L N, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy[J]. Circulation, 2013, 127(5): 575-584. |
| [26] | MURRAY G L, COLOMBO J. Ranolazine preserves and improves left ventricular ejection fraction and autonomic measures when added to guideline-driven therapy in chronic heart failure[J]. Heart Int, 2014, 9(2): 66-73. |
| [27] | MAIER L S, LAYUG B, KARWATOWSKA-PROKOPCZUK E, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study[J]. JACC Heart Fail, 2013, 1(2): 115-122. |
| [28] | WANG T, MCDONALD C, PETRENKO N B, et al. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function[J]. Mol Cell Biol, 2015, 35(7): 1281-1298. |
| [29] | SCHILLING J, KELLY D P. The PGC-1 cascade as a therapeutic target for heart failure[J]. J Mol Cell Cardiol, 2011, 51(4): 578-583. |
| [30] | XU W Y, BILLON C, LI H, et al. Novel pan-ERR agonists ameliorate heart failure through enhancing cardiac fatty acid metabolism and mitochondrial function[J]. Circulation, 2024, 149(3): 227-250. |
| [31] | MONTAIGNE D, BUTRUILLE L, STAELS B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823. |
| [32] | LEGCHENKO E, CHOUVARINE P, BORCHERT P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation[J]. Sci Transl Med, 2018, 10(438): eaao0303. |
| [33] | DAMBROVA M, MAKRECKA-KUKA M, VILSKERSTS R, et al. Pharmacological effects of meldonium: biochemical mechanisms and biomarkers of cardiometabolic activity[J]. Pharmacol Res, 2016, 113(Pt B): 771-780. |
| [34] | HAYASHI Y, KIRIMOTO T, ASAKA N, et al. Beneficial effects of MET-88, a γ-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction[J]. Eur J Pharmacol, 2000, 395(3): 217-224. |
| [35] | NAKANO M, KIRIMOTO T, ASAKA N, et al. Beneficial effects of MET-88 on left ventricular dysfunction and hypertrophy with volume overload in rats[J]. Fundam Clin Pharmacol, 1999, 13(5): 521-526. |
| [36] | KIRIMOTO T, NOBORI K, ASAKA N, et al. Beneficial effect of MET-88, a γ-butyrobetaine hydroxylase inhibitor, on energy metabolism in ischemic dog hearts[J]. Arch Int Pharmacodyn Ther, 1996, 331(2): 163-178. |
| [37] | STATSENKO M E, SHILINA N N, TURKINA S V. Use of meldonium in the combination treatment of patients with heart failure in the early postinfarction period[J]. Ter Arkh, 2014, 86(4): 30-35. |
| [38] | STATSENKO M E, BELENKOVA S V, SPOROVA O E, et al. The use of mildronate in combined therapy of postinfarction chronic heart failure in patients with type 2 diabetes mellitus[J]. Klin Med (Mosk), 2007, 85(7): 39-42. |
| [39] | MASOUD W G T, USSHER J R, WANG W, et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation[J]. Cardiovasc Res, 2014, 101(1): 30-38. |
| [40] | BERSIN R M, STACPOOLE P W. Dichloroacetate as metabolic therapy for myocardial ischemia and failure[J]. Am Heart J, 1997, 134(5 Pt 1): 841-855. |
| [41] | WANG P P, LLOYD S G, CHATHAM J C. Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart[J]. Circulation, 2005, 111(16): 2066-2072. |
| [42] | KATO T, NIIZUMA S, INUZUKA Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure[J]. Circ Heart Fail, 2010, 3(3): 420-430. |
| [43] | BØGH N, HANSEN E S S, OMANN C, et al. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure[J]. Sci Rep, 2020, 10(1): 8158. |
| [44] | BERSIN R M, WOLFE C, KWASMAN M, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate[J]. J Am Coll Cardiol, 1994, 23(7): 1617-1624. |
| [45] | LEWIS J F, DACOSTA M, WARGOWICH T, et al. Effects of dichloroacetate in patients with congestive heart failure[J]. Clin Cardiol, 1998, 21(12): 888-892. |
| [46] | AIZAWA K, IKEDA A, TOMIDA S, et al. A potent PDK4 inhibitor for treatment of heart failure with reduced ejection fraction[J]. Cells, 2023, 13(1): 87. |
| [47] | BEI Y H, ZHU Y J, ZHOU J W, et al. Inhibition of Hmbox1 promotes cardiomyocyte survival and glucose metabolism through Gck activation in ischemia/reperfusion injury[J]. Circulation, 2024, 150(11): 848-866. |
| [48] | HORTON J L, DAVIDSON M T, KURISHIMA C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J]. JCI Insight, 2019, 4(4): e124079. |
| [49] | DENG Y, XIE M D, LI Q, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res, 2021, 128(2): 232-245. |
| [50] | PACKER M, ANKER S D, BUTLER J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. |
| [51] | MCMURRAY J J V, SOLOMON S D, INZUCCHI S E, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. |
| [52] | ANKER S D, BUTLER J, FILIPPATOS G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. N Engl J Med, 2021, 385(16): 1451-1461. |
| [53] | NASSIF M E, WINDSOR S L, BORLAUG B A, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial[J]. Nat Med, 2021, 27(11): 1954-1960. |
| [54] | GHEZZI C, LOO D D F, WRIGHT E M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2[J]. Diabetologia, 2018, 61(10): 2087-2097. |
| [55] | XIE Y F, WEI Y J, LI D, et al. Mechanisms of SGLT2 inhibitors in heart failure and their clinical value[J]. J Cardiovasc Pharmacol, 2023, 81(1): 4-14. |
| [56] | PANDEY A K, BHATT D L, PANDEY A, et al. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction[J]. Eur Heart J, 2023, 44(37): 3640-3651. |
| [57] | WU X Q, LIU H, BROOKS A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11): 926-943. |
| [58] | KOLIJN D, PABEL S, TIAN Y N, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation[J]. Cardiovasc Res, 2021, 117(2): 495-507. |
| [59] | FERRANNINI E, MARK M, MAYOUX E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis[J]. Diabetes Care, 2016, 39(7): 1108-1114. |
| [60] | MUDALIAR S, ALLOJU S, HENRY R R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis[J]. Diabetes Care, 2016, 39(7): 1115-1122. |
| [61] | LOPASCHUK G D, VERMA S. Empagliflozin's fuel hypothesis: not so soon[J]. Cell Metab, 2016, 24(2): 200-202. |
| [62] | VERMA S, RAWAT S, HO K L, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors[J]. JACC Basic Transl Sci, 2018, 3(5): 575-587. |
| [63] | HO K L, KARWI Q G, WAGG C, et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency[J]. Cardiovasc Res, 2021, 117(4): 1178-1187. |
| [64] | ALLEN M E, PENNINGTON E R, PERRY J B, et al. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats[J]. Commun Biol, 2020, 3(1): 389. |
| [65] | ZHANG L, FENG M W, WANG X J, et al. Peptide Szeto-Schiller 31 ameliorates doxorubicin-induced cardiotoxicity by inhibiting the activation of the p38 MAPK signaling pathway[J]. Int J Mol Med, 2021, 47(4): 63. |
| [66] | YEH J N, SUNG P H, CHIANG J Y, et al. Early treatment with combination of SS31 and entresto effectively preserved the heart function in doxorubicin-induced dilated cardiomyopathic rat[J]. Biomed Pharmacother, 2021, 141: 111886. |
| [67] | CHATFIELD K C, SPARAGNA G C, CHAU S, et al. Elamipretide improves mitochondrial function in the failing human heart[J]. JACC Basic Transl Sci, 2019, 4(2): 147-157. |
| [68] | DAUBERT M A, YOW E, DUNN G, et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide[J]. Circ Heart Fail, 2017, 10(12): e004389. |
| [69] | BUTLER J, KHAN M S, ANKER S D, et al. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: the PROGRESS-HF phase 2 trial[J]. J Card Fail, 2020, 26(5): 429-437. |
| [70] | WONG A K F, SYMON R, ALZADJALI M A, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure[J]. Eur J Heart Fail, 2012, 14(11): 1303-1310. |
| [71] | LARSEN A H, JESSEN N, NØRRELUND H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes[J]. Eur J Heart Fail, 2020, 22(9): 1628-1637. |
| [72] | YANG J, HOLMAN G D. Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis[J]. Endocrinology, 2006, 147(6): 2728-2736. |
| [73] | SCHERNTHANER G, BRAND K, BAILEY C J. Metformin and the heart: update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure[J]. Metabolism, 2022, 130: 155160. |
| [74] | 中国医师协会心血管内科医师分会, 中国心衰中心联盟, 《慢性心力衰竭“新四联”药物治疗临床决策路径专家共识》工作组, 等. 慢性心力衰竭“新四联”药物治疗临床决策路径专家共识[J]. 中国循环杂志, 2022, 37(8): 769-781. |
| Chinese College of Cardiovascular Physicians, Chinese Heart Failure Center Alliance, The Task Force for Expert Consensus Decision Pathway for Quadruple Pharmacotherapy Management of Chronic Heart Failure, et al. Expert consensus on decision-making pathway for quadruple pharmacotherapy management of chronic heart failure[J]. Chinese Circulation Journal, 2022, 37(8): 769-781. |
| [1] | 李龙, 赵霞, 金珊, 李泽莹, 吕福强, 庞丽娟, 刘克坚. 孟德尔随机化解析AZGP1在心力衰竭中的保护作用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1035-1045. |
| [2] | 何苏荟, 赵银龙, 张家毓. 端粒酶基因治疗对压力超负荷心力衰竭小鼠的影响[J]. 上海交通大学学报(医学版), 2025, 45(8): 949-956. |
| [3] | 许天芸, 沈奕茗, 姜萌. 射血分数改善型心力衰竭的临床管理: 治疗与维持[J]. 上海交通大学学报(医学版), 2025, 45(4): 493-499. |
| [4] | 陈深册, 陈依明, 王凡, 张梦珂, 杨惟杰, 吕洞宾, 洪武. 饮食干预治疗抑郁相关症状的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(8): 1050-1055. |
| [5] | 陈铭豪, 刘沛雨, 王旋, 吴一想, 江玉瑾, 张朝阳, 张敬法. 糖尿病视网膜病变的药物治疗研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 822-829. |
| [6] | 安俊伊, 陈必颖, 陈循睿, 尹姗姗, 边洲亮, 刘峰. SFXN3在头颈部鳞状细胞癌中的表达及其对细胞增殖的影响[J]. 上海交通大学学报(医学版), 2024, 44(4): 427-434. |
| [7] | 郑晓峰, 徐凌. 多发性肌炎/皮肌炎相关间质性肺病治疗的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 531-536. |
| [8] | 孔汝心, 周亚群, 魏婷宜, 雷鸣. 癌-睾丸抗原CT63在慢性髓系白血病中的作用及其机制[J]. 上海交通大学学报(医学版), 2024, 44(11): 1347-1358. |
| [9] | 克德尔亚·艾山江, 傅怡, 赖冬林, 邬海龙, 龚伟. 肝细胞癌相关的核编码线粒体基因及临床信息的综合预后模型[J]. 上海交通大学学报(医学版), 2024, 44(1): 1-12. |
| [10] | 卢启帆, 刘启明, 周红梅, 柴烨子, 姜萌, 卜军. 慢性心力衰竭患者躯体化症状、焦虑、抑郁对临床结局的影响[J]. 上海交通大学学报(医学版), 2023, 43(9): 1153-1161. |
| [11] | 冯奕源, 徐忠匀, 尹雅芙, 王辉, 程维维. 二甲双胍改善由C9ORF72肌萎缩侧索硬化/额颞叶痴呆相关多聚甘氨酸-精氨酸诱导的线粒体损伤[J]. 上海交通大学学报(医学版), 2023, 43(7): 839-847. |
| [12] | 金芳全, 樊成虎, 唐晓栋, 陈彦同, 齐兵献. 线粒体功能障碍与骨质疏松症相关性研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 761-767. |
| [13] | 陈瑾, 傅瑶. 人角膜内皮细胞自体再生的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 775-780. |
| [14] | 洪晗馨, 王龙昊, 刘辉辉, 彭浒, 吴皓, 杨涛. 线粒体内膜转位酶8A基因敲除小鼠的构建及其内耳功能研究[J]. 上海交通大学学报(医学版), 2023, 43(3): 261-268. |
| [15] | 刘铁鑫, 林俊卿, 郑宪友. 靶向亚细胞结构治疗脊髓损伤的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 230-236. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||