Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (3): 324-334.doi: 10.3969/j.issn.1674-8115.2025.03.009
• Clinical research • Previous Articles Next Articles
CHEN Jiaying1,2(), CHU Yimin1,2, PENG Haixia1,2(
)
Received:
2024-05-29
Accepted:
2024-09-06
Online:
2025-03-28
Published:
2025-03-28
Contact:
PENG Haixia
E-mail:cjy811976991@163.com;phx1101@shtrhospital.com
Supported by:
CLC Number:
CHEN Jiaying, CHU Yimin, PENG Haixia. Study on prediction model and influencing factors of progression-free survival in colorectal cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 324-334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.03.009
Item | Total population (n=533) | Training set (n=373) | Validation set (n=160) | P value | |
---|---|---|---|---|---|
Outcome/n(%) | 0.573 | ||||
Survival | 412 (77.3) | 291 (78.0) | 121 (75.6) | ||
Death | 121 (22.7) | 82 (22.0) | 39 (24.4) | ||
Progression/n(%) | 0.491 | ||||
Yes | 191 (35.8) | 130 (34.9) | 61 (38.1) | ||
No | 342 (64.2) | 243 (65.1) | 99 (61.9) | ||
Gender/n(%) | 0.528 | ||||
Male | 324 (60.8) | 230 (61.7) | 94 (58.8) | ||
Female | 209 (39.2) | 143 (38.3) | 66 (41.3) | ||
Age/year | 68.00 (62.00, 77.00) | 68.00 (62.00, 77.00) | 67.00 (62.00, 76.00) | 0.707 | |
Family history of CRC/n(%) | >0.999 | ||||
No | 528 (99.1) | 369 (98.9) | 159 (99.4) | ||
Yes | 5 (0.9) | 4 (1.1) | 1 (0.6) | ||
Smoking history/n(%) | 0.182 | ||||
No | 502 (94.2) | 348 (93.3) | 154 (96.3) | ||
Yes | 31 (5.8) | 25 (6.7) | 6 (3.8) | ||
Alcohol consumption history/n(%) | 0.639 | ||||
No | 528 (99.1) | 370 (99.2) | 158 (98.8) | ||
Yes | 5 (0.9) | 3 (0.8) | 2 (1.3) | ||
Hypertension/n(%) | 0.275 | ||||
No | 294 (55.2) | 200 (53.6) | 94 (58.8) | ||
Yes | 239 (44.8) | 173 (46.4) | 66 (41.3) | ||
Diabetes/n(%) | 0.304 | ||||
No | 437 (82.0) | 310 (83.1) | 127 (79.4) | ||
Yes | 96 (18.0) | 63 (16.9) | 33 (20.6) | ||
Cardiovascular disease/n(%) | 0.024 | ||||
No | 384 (72.0) | 258 (69.2) | 126 (78.8) | ||
Yes | 149 (28.0) | 115 (30.8) | 34 (21.3) | ||
Kidney disease/n(%) | 0.018 | ||||
No | 509 (95.5) | 351 (94.1) | 158 (98.8) | ||
Yes | 24 (4.5) | 22 (5.9) | 2 (1.3) | ||
Liver disease/n(%) | 0.507 | ||||
No | 511 (95.9) | 359 (96.2) | 152 (95.0) | ||
Yes | 22 (4.1) | 14 (3.8) | 8 (5.0) | ||
Inflammatory bowel disease/n(%) | >0.999 | ||||
No | 532 (99.8) | 372 (99.7) | 160 (100.0) | ||
Yes | 1 (0.2) | 1 (0.3) | 0 (0) | ||
Hyperlipidemia/n(%) | 0.639 | ||||
No | 478 (89.7) | 333 (89.3) | 145 (90.6) | ||
Yes | 55 (10.3) | 40 (10.7) | 15 (9.4) | ||
Neutrophil percentage/% | 67.61±9.91 | 66.82±10.07 | 69.45±9.30 | 0.004 | |
Lymphocyte percentage/% | 23.01±8.53 | 23.61±8.44 | 21.61±8.59 | 0.014 | |
Absolute neutrophil count/n | 4.15 (3.11, 5.37) | 4.01 (3.01, 5.24) | 4.33 (3.59, 5.60) | 0.003 | |
Absolute lymphocyte count/n | 1.40 (1.10, 1.80) | 1.40 (1.10, 1.80) | 1.40 (1.04, 1.70) | 0.263 | |
Monocyte percentage/% | 6.60 (5.20, 8.20) | 1.40 (1.10, 1.80) | 6.50 (5.20, 7.98) | 0.298 | |
NLR | 3.00 (2.14, 4.42) | 2.90 (2.07, 4.05) | 3.34 (2.41, 4.95) | 0.002 | |
PLR | 600.00 (438.5, 823.49) | 584.76 (437.96, 834.08) | 626.19 (438.76, 786.53) | 0.977 | |
LMR | 3.41 (2.44, 4.58) | 3.45 (2.49, 4.57) | 3.33 (2.21, 4.66) | 0.338 | |
Hemoglobin/(g·L-1) | 119.00 (96.00, 134.00) | 120.00 (98.00, 134.00) | 118.00 (93.00, 132.00) | 0.188 | |
Platelet/(×109·L-1) | 245.00 (198.00, 308.00) | 245.00 (196.00, 304.00) | 245.50 (200.50, 317.50) | 0.609 | |
Fasting blood glucose/(mmol·L-1) | 5.80 (5.10, 7.30) | 5.70 (5.00, 7.20) | 6.00 (5.40, 7.60) | 0.005 | |
Creatinine/(μmol·L-1) | 69.10 (59.70, 80.00) | 69.30 (60.00, 79.60) | 68.90 (58.35, 81.12) | 0.571 | |
GFR/[mL·(min·1.73 m2)-1] | 116.69 (99.34, 137.51) | 118.80 (99.55, 136.77) | 118.31 (99.23, 139.27) | 0.646 | |
Urea/(mmol·L-1) | 5.00 (4.07, 6.15) | 5.00 (4.07, 6.10) | 5.04 (4.08, 6.15) | 0.910 | |
Total protein/(g·L-1) | 70.00 (64.70, 74.90) | 69.90 (64.60, 74.50) | 71.00 (64.85, 75.32) | 0.226 | |
Albumin/(g·L-1) | 40.30 (36.90, 43.30) | 40.40 (37.00, 43.00) | 40.15 (36.22, 43.62) | 0.665 | |
Total bilirubin/(μmol·L-1) | 10.10 (7.40, 14.10) | 10.10 (7.30, 14.10) | 10.05 (7.40, 13.72) | 0.678 | |
GPT/(U·L-1) | 20.00 (13.00, 29.00) | 20.00 (13.00, 29.00) | 21.00 (13.00, 30.00) | 0.539 | |
GGT/(U·L-1) | 19.00 (14.00, 28.00) | 19.00 (14.00, 29.00) | 18.00 (13.00, 26.00) | 0.135 | |
GOT/(U·L-1) | 21.00 (17.00, 25.00) | 21.00 (17.00, 25.00) | 20.00 (16.75, 26.00) | 0.987 | |
AFP/(ng·L-1) | 2.37 (1.56, 3.53) | 2.36 (1.59, 3.50) | 2.40 (1.52, 3.57) | 0.796 | |
CEA/(ng·L-1) | 3.43 (1.67, 8.98) | 3.43 (1.63, 9.05) | 3.38 (1.76, 8.39) | 0.812 | |
CA199/(U·mL-1) | 14.08 (8.47, 28.17) | 13.39 (8.19, 27.76) | 16.41 (9.31, 28.47) | 0.320 | |
CA125/(U·mL-1) | 11.65 (8.37, 18.47) | 11.29 (7.90, 17.24) | 13.36 (9.24, 24.01) | 0.004 | |
CA153/(U·mL-1) | 7.20 (4.82, 10.61) | 7.09 (4.80, 10.86) | 7.70 (4.91, 10.59) | 0.998 | |
CA724/(U·mL-1) | 2.42 (1.50, 5.74) | 2.21 (1.50, 5.20) | 3.14 (1.50, 6.69) | 0.029 | |
D-D/(mg·L-1) | 0.47 (0.25, 0.98) | 0.45 (0.25, 0.95) | 0.57 (0.27, 1.14) | 0.100 | |
INR | 0.99 (0.94, 1.04) | 0.99 (0.94, 1.04) | 0.98 (0.92, 1.05) | 0.298 | |
C-reactive protein/(mg·L-1) | 5.90 (1.80, 19.28) | 5.90 (1.80, 19.28) | 5.95 (1.64, 19.66) | 0.879 | |
AJCC clinical stage/n(%) | 0.577 | ||||
StageⅠ‒Ⅱ | 263 (49.3) | 187 (50.1) | 76 (47.5) | ||
Stage Ⅲ‒Ⅳ | 270 (50.7) | 186 (49.9) | 84 (52.5) | ||
LCR | 0.24 (0.07, 0.90) | 0.24 (0.07, 0.91) | 0.24 (0.06, 0.90) | 0.775 | |
CAR | 154.88 (42.62, 493.89) | 154.93 (42.36, 502.48) | 152.82 (43.00, 492.59) | 0.830 |
Tab 1 Baseline characteristics of the population in the training and validation sets
Item | Total population (n=533) | Training set (n=373) | Validation set (n=160) | P value | |
---|---|---|---|---|---|
Outcome/n(%) | 0.573 | ||||
Survival | 412 (77.3) | 291 (78.0) | 121 (75.6) | ||
Death | 121 (22.7) | 82 (22.0) | 39 (24.4) | ||
Progression/n(%) | 0.491 | ||||
Yes | 191 (35.8) | 130 (34.9) | 61 (38.1) | ||
No | 342 (64.2) | 243 (65.1) | 99 (61.9) | ||
Gender/n(%) | 0.528 | ||||
Male | 324 (60.8) | 230 (61.7) | 94 (58.8) | ||
Female | 209 (39.2) | 143 (38.3) | 66 (41.3) | ||
Age/year | 68.00 (62.00, 77.00) | 68.00 (62.00, 77.00) | 67.00 (62.00, 76.00) | 0.707 | |
Family history of CRC/n(%) | >0.999 | ||||
No | 528 (99.1) | 369 (98.9) | 159 (99.4) | ||
Yes | 5 (0.9) | 4 (1.1) | 1 (0.6) | ||
Smoking history/n(%) | 0.182 | ||||
No | 502 (94.2) | 348 (93.3) | 154 (96.3) | ||
Yes | 31 (5.8) | 25 (6.7) | 6 (3.8) | ||
Alcohol consumption history/n(%) | 0.639 | ||||
No | 528 (99.1) | 370 (99.2) | 158 (98.8) | ||
Yes | 5 (0.9) | 3 (0.8) | 2 (1.3) | ||
Hypertension/n(%) | 0.275 | ||||
No | 294 (55.2) | 200 (53.6) | 94 (58.8) | ||
Yes | 239 (44.8) | 173 (46.4) | 66 (41.3) | ||
Diabetes/n(%) | 0.304 | ||||
No | 437 (82.0) | 310 (83.1) | 127 (79.4) | ||
Yes | 96 (18.0) | 63 (16.9) | 33 (20.6) | ||
Cardiovascular disease/n(%) | 0.024 | ||||
No | 384 (72.0) | 258 (69.2) | 126 (78.8) | ||
Yes | 149 (28.0) | 115 (30.8) | 34 (21.3) | ||
Kidney disease/n(%) | 0.018 | ||||
No | 509 (95.5) | 351 (94.1) | 158 (98.8) | ||
Yes | 24 (4.5) | 22 (5.9) | 2 (1.3) | ||
Liver disease/n(%) | 0.507 | ||||
No | 511 (95.9) | 359 (96.2) | 152 (95.0) | ||
Yes | 22 (4.1) | 14 (3.8) | 8 (5.0) | ||
Inflammatory bowel disease/n(%) | >0.999 | ||||
No | 532 (99.8) | 372 (99.7) | 160 (100.0) | ||
Yes | 1 (0.2) | 1 (0.3) | 0 (0) | ||
Hyperlipidemia/n(%) | 0.639 | ||||
No | 478 (89.7) | 333 (89.3) | 145 (90.6) | ||
Yes | 55 (10.3) | 40 (10.7) | 15 (9.4) | ||
Neutrophil percentage/% | 67.61±9.91 | 66.82±10.07 | 69.45±9.30 | 0.004 | |
Lymphocyte percentage/% | 23.01±8.53 | 23.61±8.44 | 21.61±8.59 | 0.014 | |
Absolute neutrophil count/n | 4.15 (3.11, 5.37) | 4.01 (3.01, 5.24) | 4.33 (3.59, 5.60) | 0.003 | |
Absolute lymphocyte count/n | 1.40 (1.10, 1.80) | 1.40 (1.10, 1.80) | 1.40 (1.04, 1.70) | 0.263 | |
Monocyte percentage/% | 6.60 (5.20, 8.20) | 1.40 (1.10, 1.80) | 6.50 (5.20, 7.98) | 0.298 | |
NLR | 3.00 (2.14, 4.42) | 2.90 (2.07, 4.05) | 3.34 (2.41, 4.95) | 0.002 | |
PLR | 600.00 (438.5, 823.49) | 584.76 (437.96, 834.08) | 626.19 (438.76, 786.53) | 0.977 | |
LMR | 3.41 (2.44, 4.58) | 3.45 (2.49, 4.57) | 3.33 (2.21, 4.66) | 0.338 | |
Hemoglobin/(g·L-1) | 119.00 (96.00, 134.00) | 120.00 (98.00, 134.00) | 118.00 (93.00, 132.00) | 0.188 | |
Platelet/(×109·L-1) | 245.00 (198.00, 308.00) | 245.00 (196.00, 304.00) | 245.50 (200.50, 317.50) | 0.609 | |
Fasting blood glucose/(mmol·L-1) | 5.80 (5.10, 7.30) | 5.70 (5.00, 7.20) | 6.00 (5.40, 7.60) | 0.005 | |
Creatinine/(μmol·L-1) | 69.10 (59.70, 80.00) | 69.30 (60.00, 79.60) | 68.90 (58.35, 81.12) | 0.571 | |
GFR/[mL·(min·1.73 m2)-1] | 116.69 (99.34, 137.51) | 118.80 (99.55, 136.77) | 118.31 (99.23, 139.27) | 0.646 | |
Urea/(mmol·L-1) | 5.00 (4.07, 6.15) | 5.00 (4.07, 6.10) | 5.04 (4.08, 6.15) | 0.910 | |
Total protein/(g·L-1) | 70.00 (64.70, 74.90) | 69.90 (64.60, 74.50) | 71.00 (64.85, 75.32) | 0.226 | |
Albumin/(g·L-1) | 40.30 (36.90, 43.30) | 40.40 (37.00, 43.00) | 40.15 (36.22, 43.62) | 0.665 | |
Total bilirubin/(μmol·L-1) | 10.10 (7.40, 14.10) | 10.10 (7.30, 14.10) | 10.05 (7.40, 13.72) | 0.678 | |
GPT/(U·L-1) | 20.00 (13.00, 29.00) | 20.00 (13.00, 29.00) | 21.00 (13.00, 30.00) | 0.539 | |
GGT/(U·L-1) | 19.00 (14.00, 28.00) | 19.00 (14.00, 29.00) | 18.00 (13.00, 26.00) | 0.135 | |
GOT/(U·L-1) | 21.00 (17.00, 25.00) | 21.00 (17.00, 25.00) | 20.00 (16.75, 26.00) | 0.987 | |
AFP/(ng·L-1) | 2.37 (1.56, 3.53) | 2.36 (1.59, 3.50) | 2.40 (1.52, 3.57) | 0.796 | |
CEA/(ng·L-1) | 3.43 (1.67, 8.98) | 3.43 (1.63, 9.05) | 3.38 (1.76, 8.39) | 0.812 | |
CA199/(U·mL-1) | 14.08 (8.47, 28.17) | 13.39 (8.19, 27.76) | 16.41 (9.31, 28.47) | 0.320 | |
CA125/(U·mL-1) | 11.65 (8.37, 18.47) | 11.29 (7.90, 17.24) | 13.36 (9.24, 24.01) | 0.004 | |
CA153/(U·mL-1) | 7.20 (4.82, 10.61) | 7.09 (4.80, 10.86) | 7.70 (4.91, 10.59) | 0.998 | |
CA724/(U·mL-1) | 2.42 (1.50, 5.74) | 2.21 (1.50, 5.20) | 3.14 (1.50, 6.69) | 0.029 | |
D-D/(mg·L-1) | 0.47 (0.25, 0.98) | 0.45 (0.25, 0.95) | 0.57 (0.27, 1.14) | 0.100 | |
INR | 0.99 (0.94, 1.04) | 0.99 (0.94, 1.04) | 0.98 (0.92, 1.05) | 0.298 | |
C-reactive protein/(mg·L-1) | 5.90 (1.80, 19.28) | 5.90 (1.80, 19.28) | 5.95 (1.64, 19.66) | 0.879 | |
AJCC clinical stage/n(%) | 0.577 | ||||
StageⅠ‒Ⅱ | 263 (49.3) | 187 (50.1) | 76 (47.5) | ||
Stage Ⅲ‒Ⅳ | 270 (50.7) | 186 (49.9) | 84 (52.5) | ||
LCR | 0.24 (0.07, 0.90) | 0.24 (0.07, 0.91) | 0.24 (0.06, 0.90) | 0.775 | |
CAR | 154.88 (42.62, 493.89) | 154.93 (42.36, 502.48) | 152.82 (43.00, 492.59) | 0.830 |
Characteristic | Univariate Cox regression | Multivariate Cox regression | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | <0.001 | 1.03 (1.01‒1.05) | 0.007 |
Smoking history | 1.96 (1.08‒3.56) | 0.028 | 2.10 (1.11‒3.96) | 0.023 |
Liver disease | 4.03 (2.16‒7.53) | <0.001 | 2.91 (1.50‒5.62) | 0.001 |
Hyperlipidemia | 0.40 (0.19‒0.86) | 0.018 | 0.51 (0.23‒1.11) | 0.088 |
Hemoglobin | 0.99 (0.98‒1.00) | 0.002 | 1.00 (0.99‒1.01) | 0.793 |
Total protein | 0.96 (0.94‒0.99) | 0.002 | 0.97 (0.94‒1.03) | 0.161 |
Albumin | 0.94 (0.91‒0.97) | <0.001 | 1.01 (0.94‒1.08) | 0.769 |
GPT | 0.98 (0.97‒1.00) | 0.046 | 0.99 (0.97‒1.01) | 0.172 |
CEA | 1.01 (1.00‒1.01) | <0.001 | 1.00 (1.00‒1.01) | 0.096 |
CA724 | 1.09 (1.06‒1.13) | <0.001 | 1.08 (1.04‒1.12) | <0.001 |
D-D | 1.06 (1.00‒1.11) | 0.034 | 1.01 (0.94‒1.10) | 0.747 |
AJCC clinical stage | 2.03 (1.42‒2.91) | <0.001 | 1.87 (1.29‒2.72) | <0.001 |
Tab 2 Univariate and multivariate Cox regression analysis on the training set of PFS
Characteristic | Univariate Cox regression | Multivariate Cox regression | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | <0.001 | 1.03 (1.01‒1.05) | 0.007 |
Smoking history | 1.96 (1.08‒3.56) | 0.028 | 2.10 (1.11‒3.96) | 0.023 |
Liver disease | 4.03 (2.16‒7.53) | <0.001 | 2.91 (1.50‒5.62) | 0.001 |
Hyperlipidemia | 0.40 (0.19‒0.86) | 0.018 | 0.51 (0.23‒1.11) | 0.088 |
Hemoglobin | 0.99 (0.98‒1.00) | 0.002 | 1.00 (0.99‒1.01) | 0.793 |
Total protein | 0.96 (0.94‒0.99) | 0.002 | 0.97 (0.94‒1.03) | 0.161 |
Albumin | 0.94 (0.91‒0.97) | <0.001 | 1.01 (0.94‒1.08) | 0.769 |
GPT | 0.98 (0.97‒1.00) | 0.046 | 0.99 (0.97‒1.01) | 0.172 |
CEA | 1.01 (1.00‒1.01) | <0.001 | 1.00 (1.00‒1.01) | 0.096 |
CA724 | 1.09 (1.06‒1.13) | <0.001 | 1.08 (1.04‒1.12) | <0.001 |
D-D | 1.06 (1.00‒1.11) | 0.034 | 1.01 (0.94‒1.10) | 0.747 |
AJCC clinical stage | 2.03 (1.42‒2.91) | <0.001 | 1.87 (1.29‒2.72) | <0.001 |
Item | Age≥65 years | Age<65 years | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | 0.009 | 1.01 (0.97‒1.05) | 0.649 |
Smoking history | 1.78 (0.86‒3.72) | 0.123 | 2.40 (1.02‒5.68) | 0.046 |
Liver disease | 2.82 (1.50‒5.28) | 0.001 | 1.80 (0.55‒5.83) | 0.330 |
CA724 | 1.03 (0.99‒1.08) | 0.118 | 1.12 (1.07‒1.16) | <0.001 |
AJCC clinical stage | 2.15 (1.50‒3.07) | <0.001 | 3.50 (1.89‒6.50) | <0.001 |
Tab 3 Multivariate Cox regression analysis on PFS in patients aged≥65 years and <65 years
Item | Age≥65 years | Age<65 years | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | 0.009 | 1.01 (0.97‒1.05) | 0.649 |
Smoking history | 1.78 (0.86‒3.72) | 0.123 | 2.40 (1.02‒5.68) | 0.046 |
Liver disease | 2.82 (1.50‒5.28) | 0.001 | 1.80 (0.55‒5.83) | 0.330 |
CA724 | 1.03 (0.99‒1.08) | 0.118 | 1.12 (1.07‒1.16) | <0.001 |
AJCC clinical stage | 2.15 (1.50‒3.07) | <0.001 | 3.50 (1.89‒6.50) | <0.001 |
Item | Male | Female | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | <0.001 | 1.01 (1.00‒1.03) | 0.122 |
Smoking history | 2.19 (1.23‒3.88) | 0.007 | ‒ | ‒ |
Liver disease | 1.97 (0.90‒3.88) | 0.088 | 3.71 (1.66‒8.30) | 0.001 |
CA724 | 1.05 (1.01‒1.09) | 0.008 | 1.10 (1.05‒1.15) | <0.001 |
AJCC clinical stage | 2.49 (1.67‒3.73) | <0.001 | 2.83 (1.73‒4.63) | <0.001 |
Tab 4 Multivariate Cox regression analysis on PFS in male and female patients
Item | Male | Female | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.03 (1.01‒1.05) | <0.001 | 1.01 (1.00‒1.03) | 0.122 |
Smoking history | 2.19 (1.23‒3.88) | 0.007 | ‒ | ‒ |
Liver disease | 1.97 (0.90‒3.88) | 0.088 | 3.71 (1.66‒8.30) | 0.001 |
CA724 | 1.05 (1.01‒1.09) | 0.008 | 1.10 (1.05‒1.15) | <0.001 |
AJCC clinical stage | 2.49 (1.67‒3.73) | <0.001 | 2.83 (1.73‒4.63) | <0.001 |
Item | AJCC stage Ⅰ‒Ⅱ | AJCC stage Ⅲ‒Ⅳ | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.04 (1.01‒1.06) | 0.002 | 1.02 (1.00‒1.03) | 0.028 |
Smoking history | 2.70 (1.07‒6.83) | 0.036 | 1.65 (0.83‒3.28) | 0.157 |
Liver disease | 1.11 (0.27‒4.64) | 0.883 | 2.75 (1.50‒5.06) | 0.001 |
CA724 | 1.04 (0.99‒1.09) | 0.099 | 1.08 (1.04‒1.12) | <0.001 |
Tab 5 Multivariate Cox regression analysis on PFS in patients with AJCC stage Ⅰ‒Ⅱ and stage Ⅲ‒Ⅳ
Item | AJCC stage Ⅰ‒Ⅱ | AJCC stage Ⅲ‒Ⅳ | ||
---|---|---|---|---|
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.04 (1.01‒1.06) | 0.002 | 1.02 (1.00‒1.03) | 0.028 |
Smoking history | 2.70 (1.07‒6.83) | 0.036 | 1.65 (0.83‒3.28) | 0.157 |
Liver disease | 1.11 (0.27‒4.64) | 0.883 | 2.75 (1.50‒5.06) | 0.001 |
CA724 | 1.04 (0.99‒1.09) | 0.099 | 1.08 (1.04‒1.12) | <0.001 |
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | BRENNER B, GEVA R, ROTHNEY M, et al. Impact of the 12-gene colon cancer assay on clinical decision making for adjuvant therapy in stage Ⅱ colon cancer patients[J]. Value Health, 2016, 19(1): 82-87. |
3 | OSTERMAN E, GLIMELIUS B. Recurrence risk after up-to-date colon cancer staging, surgery, and pathology: analysis of the entire Swedish population[J]. Dis Colon Rectum, 2018, 61(9): 1016-1025. |
4 | VAN ZUTPHEN M, BOSHUIZEN H C, KENKHUIS M F, et al. Lifestyle after colorectal cancer diagnosis in relation to recurrence and all-cause mortality[J]. Am J Clin Nutr, 2021, 113(6): 1447-1457. |
5 | 史金鑫, 崔健, 李子建, 等. 不同年龄段老年结直肠癌患者术后临床特征分析[J]. 中华医学杂志, 2022, 102(8): 563-568. |
SHI J X, CUI J, LI Z J, et al. Contrastive analysis about the postoperative clinical characteristics of elderly patients with colorectal cancer in different age groups[J]. National Medical Journal of China, 2022, 102(8): 563-568. | |
6 | 中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2023版)[J]. 中华消化外科杂志, 2023, 22(6): 667-698. |
National Health Commission of the People′s Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2023 edition)[J]. Chinese Society of Oncology, 2023, 22(6): 667-698. | |
7 | STIKSMA J, GROOTENDORST D C, VAN DER LINDEN P W G. CA 19-9 as a marker in addition to CEA to monitor colorectal cancer[J]. Clin Colorectal Cancer, 2014, 13(4): 239-244. |
8 | AMIN M B, GREENE F L, EDGE S B, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-99. |
9 | KONISHI T, SHIMADA Y, HSU M, et al. Association of preoperative and postoperative serum carcinoembryonic antigen and colon cancer outcome[J]. JAMA Oncol, 2018, 4(3): 309-315. |
10 | KUANG J A, GONG Y Z, XIE H L, et al. The prognostic value of preoperative serum CA724 for CEA-normal colorectal cancer patients[J]. PeerJ, 2020, 8: e8936. |
11 | 闫超, 陕飞, 李子禹. 2020年中国与全球结直肠癌流行概况分析[J]. 中华肿瘤杂志, 2023, 45(3): 221-229. |
YAN C, SHAN F, LI Z Y. Prevalence of colorectal cancer in 2020: a comparative analysis between China and the world[J]. Chinese Journal of Oncology, 2023, 45(3): 221-229. | |
12 | LIEU C H, RENFRO L A, DE GRAMONT A, et al. Association of age with survival in patients with metastatic colorectal cancer: analysis from the ARCAD Clinical Trials Program[J]. J Clin Oncol, 2014, 32(27): 2975-2984. |
13 | ZHOU X, XIAO Q, JIANG F Y, et al. Dissecting the pathogenic effects of smoking and its hallmarks in blood DNA methylation on colorectal cancer risk[J]. Br J Cancer, 2023, 129(8): 1306-1313. |
14 | BOTTERI E, BORRONI E, SLOAN E K, et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis[J]. Am J Gastroenterol, 2020, 115(12): 1940-1949. |
15 | AMITAY E L, CARR P R, JANSEN L, et al. Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways[J]. Br J Cancer, 2020, 122(11): 1604-1610. |
16 | PHIPPS A I, SHI Q, NEWCOMB P A, et al. Associations between cigarette smoking status and colon cancer prognosis among participants in North Central Cancer Treatment Group Phase Ⅲ Trial N0147[J]. J Clin Oncol, 2013, 31(16): 2016-2023. |
17 | LV Y, ZHANG H J. Effect of non-alcoholic fatty liver disease on the risk of synchronous liver metastasis: analysis of 451 consecutive patients of newly diagnosed colorectal cancer[J]. Front Oncol, 2020, 10: 251. |
18 | WU K N, ZHAI M Z, WELTZIEN E K, et al. Non-alcoholic fatty liver disease and colorectal cancer survival[J]. Cancer Causes Control, 2019, 30(2): 165-168. |
19 | UTSUNOMIYA T, SAITSU H, SAKU M, et al. Rare occurrence of colorectal cancer metastasis in livers infected with hepatitis B or C virus[J]. Am J Surg, 1999, 177(4): 279-281. |
20 | QIU H B, ZHANG L Y, ZENG Z L, et al. HBV infection decreases risk of liver metastasis in patients with colorectal cancer: a cohort study[J]. World J Gastroenterol, 2011, 17(6): 804-808. |
21 | HUO T T, CAO J Y, TIAN Y W, et al. Effect of concomitant positive hepatitis B surface antigen on the risk of liver metastasis: a retrospective clinical study of 4033 consecutive cases of newly diagnosed colorectal cancer[J]. Clin Infect Dis, 2018, 66(12): 1948-1952. |
22 | JING X L, ZHANG S C. An ancient molecule with novel function: alanine aminotransferase as a lipopolysaccharide binding protein with bacteriocidal activity[J]. Dev Comp Immunol, 2011, 35(1): 94-104. |
23 | HE M M, FANG Z, HANG D, et al. Circulating liver function markers and colorectal cancer risk: a prospective cohort study in the UK Biobank[J]. Int J Cancer, 2021, 148(8): 1867-1878. |
24 | FU J M, DU F Q, TIAN T, et al. Development and validation of prognostic nomograms based on De Ritis ratio and clinicopathological features for patients with stage Ⅱ/Ⅲ colorectal cancer[J]. BMC Cancer, 2023, 23(1): 620. |
25 | LEE J H, JUNG S, PARK W S, et al. Prognostic nomogram of hypoxia-related genes predicting overall survival of colorectal cancer-analysis of TCGA database[J]. Sci Rep, 2019, 9(1): 1803. |
[1] | QIAN Liheng, WEN Kailing, LIAO Yingna, LI Shuxin, NIE Huizhen. Study on the effect and mechanism of sorting nexin 1 on inhibiting the proliferation and migration of colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1124-1135. |
[2] | FENG Xujiao, LIU Jianyue, QI Yangyang, SUN Jing, SHEN Lei. Phenotype and function of NK cell in colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 713-722. |
[3] | YU Yang, MENG Dan, QIU Yiwen, YUAN Jian, ZHU Yingjie. Analysis of impact of type 1 diabetes on colorectal cancer by using two-sample Mendelian randomization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 755-761. |
[4] | FU Yiling, WU Qian, LUO Xiaoqing, WU Aihong, XIA Xuelan, ZHENG Min. Factors influencing advance care planning engagement behavior in patients with advanced cancer: a systematic review [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 482-493. |
[5] | LUO Chen, SHEN Ling, WANG Chuanwei, GU Jiani, WANG Jin, ZHAO Li, HUANG Shuai. Current status and influencing factors of early mobilization of patients undergoing laparoscopic radical resection of colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1201-1210. |
[6] | WANG Xiaoyu, PENG Yinhui, MA Wenlin, YAO Boshuang, LI Yifan, ZHAO Li, YANG Chunxia. A longitudinal study on new onset anxiety among children and adolescents during the COVID-19 epidemic [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 963-970. |
[7] | PENG Tian, XU Leiming. Crosstalk between epigenetic modification and circRNA in colorectal cancer: recent advances [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 237-243. |
[8] | TU Juanjuan, JIN Zhiming. Research progress of immune checkpoint inhibitors in the treatment of metastatic colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 250-255. |
[9] | TAI Rui, FANG Fang, MAO Jingjue, ZHOU Xia. Analysis of influencing factors of adaptation level in patients with permanent enterostomy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1423-1429. |
[10] | HU Muni, JI Linhua, ZHANG Xinyu, SHEN Chaoqin, HONG Jie, CHEN Haoyan. Association analysis of T cell receptor repertoire diversity with clinical characteristics and Fusobacterium nucleatum abundance in colorectal cancer patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1045-1052. |
[11] | QIU Jiahui, CAI Qianqian, YANG Yan, CHENG Feichi, QIU Zhengjun, HUANG Chen. Value of combined perineural lymphovascular invasion and tumor-stroma ratio in guiding the prognosis of colorecatal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1070-1080. |
[12] | CUI Peirong, NI Xueping, ZONG Mingchan, XIN Xiao, JIANG Yulu, LI Xianhua. Status and path analysis of influencing factors on the health information seeking behavior in elderly patients with chronic diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 805-812. |
[13] | XU Li, YANG Yan, CHEN Hanfen, JIANG Meng, PU Jun. Study on influencing factors and effect evaluation of patients with acute myocardial infarction in the cardiac rehabilitation center [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 646-652. |
[14] | ZHAO Min, CHU Yimin, PENG Haixia. Research advances in screening modalities for colorectal cancer and colorectal adenoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 673-679. |
[15] | GONG Qiyu, CHEN Lei. Role of circulating and infiltrating B cells in immune microenvironment of colorectal cancer by multi-omics data profiling [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 472-481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||