
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (6): 834-838.doi: 10.3969/j.issn.1674-8115.2021.06.023
• Review • Previous Articles
Ming-qi CAI1(
), Yan CHEN2, Kai-bin LIN1, Dong HUANG1(
)
Online:2021-06-28
Published:2021-06-29
Contact:
Dong HUANG
E-mail:cai_mingqi0123@163.com;huangdong1004@126.com
Supported by:CLC Number:
Ming-qi CAI, Yan CHEN, Kai-bin LIN, Dong HUANG. Advances in the role of growth differentiation factor 11 in cardiovascular diseases[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 834-838.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.06.023
| 1 | Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015[J]. J Am Coll Cardiol, 2017, 70(1): 1-25. |
| 2 | Nakashima M, Toyono T, Akamine A, et al. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis[J]. Mech Dev, 1999, 80(2): 185-189. |
| 3 | Oxburgh L. TGF superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population[J]. Development, 2004, 131(18): 4593-4605. |
| 4 | Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice[J]. Dev Dyn, 2006, 235(11): 3016-3025. |
| 5 | Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Dev Camb Engl, 2011, 138(19): 4131-4142. |
| 6 | Li Z, Zeng F, Mitchell AD, et al. Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation[J]. Biochem Biophys Res Commun, 2011, 416(3): 289-292. |
| 7 | Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J]. Cell, 2013, 153(4): 828-839. |
| 8 | Zhang YH, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease[J]. Oncotarget, 2017, 8(46): 81604-81616. |
| 9 | Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis[J]. Crit Rev Biochem Mol Biol, 2019, 54(2): 174-183. |
| 10 | Kondás K, Szláma G, Trexler M, et al. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11[J]. J Biol Chem, 2008, 283(35): 23677-23684. |
| 11 | Jamaiyar A, Wan W, Janota DM, et al. The versatility and paradox of GDF 11[J]. Pharmacol Ther, 2017, 175: 28-34. |
| 12 | Roh JD, Hobson R, Chaudhari V, et al. Activin type II receptor signaling in cardiac aging and heart failure[J]. Sci Transl Med, 2019, 11(482): eaau8680. |
| 13 | Su HH, Liao JM, Wang YH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury[J]. Basic Res Cardiol, 2019, 114(3): 20. |
| 14 | Zhang YH, Cheng F, Du XT, et al. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells[J]. Oncotarget, 2016, 7(11): 12063-12074. |
| 15 | Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system[J]. Cardiovasc Res, 2006, 69(1): 15-25. |
| 16 | Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Investig, 2017, 127(10): 3770-3783. |
| 17 | Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction[J]. Front Cardiovasc Med, 2019, 6: 140. |
| 18 | Walker RG, Czepnik M, Goebel EJ, et al. Structural basis for potency differences between GDF8 and GDF11[J]. BMC Biol, 2017, 15(1): 1-22. |
| 19 | Tarver T. Heart disease and stroke statistics–2014 update: a report from the American heart association[J]. J Consumer Heal Internet, 2014, 18(2): 209. |
| 20 | Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J]. Cell Metab, 2015, 22(1): 164-174. |
| 21 | Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age[J]. Circ Res, 2016, 118(1): 29-37. |
| 22 | Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease[J]. Cell Metab, 2016, 23(6): 1207-1215. |
| 23 | Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts[J]. Eur Heart J, 2015, 36(48): 3426-3434. |
| 24 | Zhou Y, Ni SS, Song LL, et al. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri[J]. Biogerontology, 2019, 20(2): 225-239. |
| 25 | Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014, 344(6184): 649-652. |
| 26 | Ozek C, Krolewski RC, Buchanan SM, et al. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice[J]. Sci Rep, 2018, 8(1): 17293. |
| 27 | Li H, Li YX, Xiang LW, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet β-cell function and survival[J]. Diabetes, 2017, 66(7): 1914-1927. |
| 28 | Aurigemma GP. Diastolic heart failure: a common and lethal condition by any name[J]. N Engl J Med, 2006, 355(3): 308-310. |
| 29 | Smith SC, Zhang XX, Zhang XY, et al. GDF11 does not rescue aging-related pathological hypertrophy[J]. Circ Res, 2015, 117(11): 926-932. |
| 30 | Zimmers TA, Jiang YL, Wang MJ, et al. Erratum to: exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting[J]. Basic Res Cardiol, 2017, 112(5): 53. |
| 31 | Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload-induced hypertrophy, but can cause severe cachexia and premature death[J]. Circ Res, 2018, 123(11): 1220-1231. |
| 32 | Zhang CJ, Wang Y, Ge ZR, et al. GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and β-MHC through down- regulating CCL11 in mice[J]. Curr Mol Med, 2018, 18(10): 661-671. |
| 33 | Duran J, Troncoso M, Lagos D, et al. GDF11 modulates Ca2+-dependent Smad2/3 signaling to prevent cardiomyocyte hypertrophy[J]. Int J Mol Sci, 2018, 19(5): 1508. |
| 34 | Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C, et al. GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication[J]. Pharmacol Res, 2019, 146: 104273. |
| 35 | Garbern J, Kristl AC, Bassaneze V, et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H201-H212. |
| 36 | Mei W, Xiang GD, Li YX, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E-null mice[J]. Mol Ther, 2016, 24(11): 1926-1938. |
| 37 | Zhao L, Zhang SH, Cui J, et al. TERT assists GDF11 to rejuvenate senescent VEGFR2+/CD133+ cells in elderly patients with myocardial infarction[J]. Lab Investig J Tech Methods Pathol, 2019, 99(11): 1661-1688. |
| 38 | Du GQ, Shao ZB, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury[J]. Basic Res Cardiol, 2016, 112(1): 1-14. |
| 39 | Zhou B, Yu YL, Qiu Z, et al. GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats[J]. Acta Cir Bras, 2019, 34(11). DOI:10.1590/s0102-865020190110000006. |
| 40 | Zhang XJ, Tan H, Shi ZF, et al. Growth differentiation factor 11 is involved in isoproterenol-induced heart failure[J]. Mol Med Rep, 2019, 19(5): 4109-4118. |
| 41 | Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality?[J]. Int J Mol Sci, 2019, 20(14): 3563. |
| 42 | Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, et al. GDF11 implications in cancer biology and metabolism. facts and controversies[J]. Front Oncol, 2019, 9: 1039. |
| [1] | WANG Jingyi, DENG Jiali, ZHU Yi, DING Xinyi, GUO Jiajing, WANG Zhongling. Experimental study on novel pH-responsive manganese-based nanoprobes for ferroptosis and magnetic resonance imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1183-1193. |
| [2] | LI Siyu, CHEN Ya, HU Wentao, DAI Yongming, WU Yingwei. Using diffusion-relaxation correlation spectroscopic imaging to assess the heterogeneity of head and neck tumors and identify occult lymph node metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1202-1213. |
| [3] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [4] | SUN Lei, DAI Shifeng, CHEN Yuhua, XU Xinyi, JIANG Kele, LI Xiaowen, LI Chengjing, WU Tingting. Quantitative analysis of the distance between articular disc and condyle in patients with temporomandibular disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 684-692. |
| [5] | LI Zhuohang, YU Xindi, REN Jingya, SHEN Jia, DONG Suzhen, WANG Wei. Postoperative neurodevelopmental outcomes of end-to-side anastomosis for coarctation of the aorta [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 753-759. |
| [6] | GU Liangrui, YAN Bicong, FANG Tonglei, WU Jinliang. Correlation between brain imaging features and cognitive impairment in end-stage renal disease patients based on susceptibility-weighted imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 760-765. |
| [7] | ZHANG Zhengjia, LI Xiaomin, ZHOU Xin, MA Hairong, AI Songtao. Preliminary study on the value of high-order functional magnetic resonance imaging in the evaluation of bone and soft tissue tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 585-596. |
| [8] | CAO Mingming, WANG Hui, YIN Yafu. Current research status of imaging markers for cognitive impairment in Parkinson′s disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 646-652. |
| [9] | ZHANG Huihua, GAN Jing, HOU Miaomiao, LU Na. Bidirectional Mendelian randomization study of the relationship between brain imaging-derived phenotypes and obstructive sleep apnea [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 468-475. |
| [10] | DENG Jiali, GUO Jiajing, WANG Jingyi, DING Xinyi, ZHU Yi, WANG Zhongling. Self -assembled drug -loaded nanoprobes for pyroptosis sensitization and chemical exchange saturation transfer imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 271-281. |
| [11] | SUN Yidan, YANG Xin. Functional MRI study on anxiety-enhanced temporomandibular joint pain [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 342-348. |
| [12] | LI Chenxi, WANG Zirui, JIN Tianhao, ZHOU Zengtong, TANG Guoyao, SHI Linjun. Correlation between computer-assisted quantitative autofluorescence imaging results and the pathological grading of oral epithelial dysplasia in oral leukoplakia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1146-1154. |
| [13] | LUO Rui, YANG Gongxin, SHI Huimin, HAN Yongshun, HE Yining, TIAN Zhen, WU Yingwei. Study of imaging characteristics of Kimura disease in the head and neck [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1182-1189. |
| [14] | HAO Mingxiu, CHEN Hongwei, WANG Junlin, TANG Yinhan, WU Yunyun, JIN Yuhua, HU Yaomin. Investigation and epidemiological analysis of chronic diseases and comorbidities in hospitalized patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 462-468. |
| [15] | LIU Yonghui, TANG Li, LIANG Taigang, ZHANG Jian, FENG Li. Research progress in the role of SIRT6 in aging and metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1439-1446. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||