Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (7): 915-921.doi: 10.3969/j.issn.1674-8115.2024.07.013
• Review • Previous Articles
LIU Shiqi1(), WANG Hui1, FENG Fang2()
Received:
2024-03-11
Accepted:
2024-04-10
Online:
2024-07-28
Published:
2024-07-28
Contact:
FENG Fang
E-mail:lsq0617@sjtu.edu.cn;2305120@tongji.edu.cn
Supported by:
CLC Number:
LIU Shiqi, WANG Hui, FENG Fang. Advances in molecular mechanisms of iodine-131 therapy resistance in thyroid carcinoma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 915-921.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.07.013
1 | MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459. |
2 | MIRANDA-FILHO A, LORTET-TIEULENT J, BRAY F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study[J]. Lancet Diabetes Endocrinol, 2021, 9(4): 225-234. |
3 | DAVIES L, HOANG J K. Thyroid cancer in the USA: current trends and outstanding questions[J]. Lancet Diabetes Endocrinol, 2021, 9(1): 11-12. |
4 | DE LA FOUCHARDIERE C, ALGHUZLAN A, BARDET S, et al. The medical treatment of radioiodine-refractory differentiated thyroid cancers in 2019. A TUTHYREF® network review[J]. Bull Cancer, 2019, 106(9): 812-819. |
5 | OH J M, AHN B C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277. |
6 | SCHEFFEL R S, DORA J M, MAIA A L. BRAF mutations in thyroid cancer[J]. Curr Opin Oncol, 2022, 34(1): 9-18. |
7 | SCHLUMBERGER M, LEBOULLEUX S. Current practice in patients with differentiated thyroid cancer[J]. Nat Rev Endocrinol, 2021, 17(3): 176-188. |
8 | YU P C, QU N, ZHU R, et al. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis[J]. Sci Adv, 2023, 9(35): eadg7125. |
9 | FAN T B, ZHU W B, KONG M, et al. The significance of PAX8-PPARγ expression in thyroid cancer and the application of a PAX8-PPARγ-targeted ultrasound contrast agent in the early diagnosis of thyroid cancer[J]. Contrast Media Mol Imaging, 2022, 2022: 3265342. |
10 | MANZELLA L, STELLA S, PENNISI M S, et al. New insights in thyroid cancer and p53 family proteins[J]. Int J Mol Sci, 2017, 18(6): 1325. |
11 | DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. |
12 | HAYES D N, LUCAS A S, TANVETYANON T, et al. Phase Ⅱ efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements[J]. Clin Cancer Res, 2012, 18(7): 2056-2065. |
13 | HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632. |
14 | HO A L, DEDECJUS M, WIRTH L J, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J]. J Clin Oncol, 2022, 40(17): 1870-1878. |
15 | AASHIQ M, SILVERMAN D A, NA′ARA S, et al. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies[J]. Cancers, 2019, 11(9): 1382. |
16 | DOGHISH A S, EL-MAHDY H A, ISMAIL A, et al. Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways[J]. Pathol Res Pract, 2023, 243: 154371. |
17 | PEKOVA B, SYKOROVA V, MASTNIKOVA K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis[J]. Cancers, 2021, 13(8): 1932. |
18 | NIKITSKI A V, CONDELLO V, DIVAKARAN S S, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473. |
19 | CHEN X, LI M Z, ZHOU H W, et al. MiR-132 targets FOXA1 and exerts tumor-suppressing functions in thyroid cancer[J]. Oncol Res, 2019, 27(4): 431-437. |
20 | MA Y H, ZHANG Q, ZHANG K X, et al. NTRK fusions in thyroid cancer: pathology and clinical aspects[J]. Crit Rev Oncol Hematol, 2023, 184: 103957. |
21 | GROUSSIN L, CLERC J, HUILLARD O. Larotrectinib-enhanced radioactive iodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2020, 383(17): 1686-1687. |
22 | DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. |
23 | HWANG E, DOOLITTLE W K L, ZHU Y J, et al. Thyroid hormone receptor α1: a novel regulator of thyroid cancer cell differentiation[J]. Oncogene, 2023, 42(41): 3075-3086. |
24 | FERNÁNDEZ L P, LÓPEZ-MÁRQUEZ A, SANTISTEBAN P. Thyroid transcription factors in development, differentiation and disease[J]. Nat Rev Endocrinol, 2015, 11(1): 29-42. |
25 | FU H, CHENG L X, JIN Y C, et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAF V600E: an in vitro study[J]. Mol Ther Oncolytics, 2019, 12: 235-245. |
26 | READ M L, LEWY G D, FONG J C W, et al. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment[J]. Cancer Res, 2011, 71(19): 6153-6164. |
27 | HO P T B, CLARK I M, LE L T T. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci, 2022, 23(13): 7167. |
28 | 李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351. |
LI Y, GUO M, KANG Y Y. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. | |
29 | KONDROTIENĖ A, DAUKŠA A, PAMEDYTYTĖ D, et al. Papillary thyroid carcinoma tissue miR-146b, -21, -221, -222, -181b expression in relation with clinicopathological features[J]. Diagnostics, 2021, 11(3): 418. |
30 | GALUPPINI F, CENSI S, MERANTE BOSCHIN I, et al. Papillary thyroid carcinoma: molecular distinction by microRNA profiling[J]. Front Endocrinol, 2022, 13: 834075. |
31 | LAKSHMANAN A, WOJCICKA A, KOTLAREK M, et al. MicroRNA-339-5p modulates Na+/I- symporter-mediated radioiodide uptake[J]. Endocr Relat Cancer, 2015, 22(1): 11-21. |
32 | HOU S S, XIE X R, ZHAO J, et al. Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20[J]. Front Oncol, 2020, 10: 566365. |
33 | JUNG C K. Crosstalk between the tumor microenvironment and immune response in thyroid cancer[J]. Gland Surg, 2019, 8(3): 294-297. |
34 | KABASAWA T, OHE R, AUNG N Y, et al. Potential role of M2 TAMs around lymphatic vessels during lymphatic invasion in papillary thyroid carcinoma[J]. Sci Rep, 2021, 11(1): 1150. |
35 | CHEN D W, LANG B H H, MCLEOD D S A, et al. Thyroid cancer[J]. Lancet, 2023, 401(10387): 1531-1544. |
36 | KARACA Z, TANRIVERDI F, UNLUHIZARCI K, et al. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma[J]. Eur J Endocrinol, 2011, 164(2): 277-284. |
37 | PLANTINGA T S, PETRULEA M S, OOSTING M, et al. Association of NF-κB polymorphisms with clinical outcome of non-medullary thyroid carcinoma[J]. Endocr Relat Cancer, 2017, 24(7): 307-318. |
38 | OHTA K, PANG X P, BERG L, et al. Antitumor actions of cytokines on new human papillary thyroid carcinoma cell lines[J]. J Clin Endocrinol Metab, 1996, 81(7): 2607-2612. |
39 | SLOOT Y J E, RABOLD K, ULAS T, et al. Interplay between thyroid cancer cells and macrophages: effects on IL-32 mediated cell death and thyroid cancer cell migration[J]. Cell Oncol, 2019, 42(5): 691-703. |
40 | ZHANG G Q, XI C, SHEN C T, et al. Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells[J]. Endocr Relat Cancer, 2023, 30(9): e230130. |
41 | QIN Y, SUN W, WANG Z H, et al. ATF2-induced lncRNA GAS8-AS1 promotes autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 axes[J]. Mol Ther Nucleic Acids, 2020, 22: 584-600. |
42 | HOLM T M, BIAN Z C, MANUPATI K, et al. Inhibition of autophagy mitigates cell migration and invasion in thyroid cancer[J]. Surgery, 2022, 171(1): 235-244. |
43 | CHEN X, LIN S, LIN Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma[J]. J Transl Med, 2022, 20(1): 79. |
44 | SHI Y B, CHEN S Y, LIU R B. The new insights into autophagy in thyroid cancer progression[J]. J Transl Med, 2023, 21(1): 413. |
45 | GUNDAMARAJU R, LU W Y, PAUL M K, et al. Autophagy and EMT in cancer and metastasis: who controls whom?[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431. |
46 | YANG Y P, LAI W Y, LIN T W, et al. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation[J]. J Chin Med Assoc, 2022, 85(6): 667-671. |
47 | WANG M, YU H, WU R, et al. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells[J]. Int J Mol Med, 2020, 46(5): 1816-1826. |
48 | JIMÉNEZ-MORA E, GALLEGO B, DÍAZ-GAGO S, et al. V600EBRAF inhibition induces cytoprotective autophagy through AMPK in thyroid cancer cells[J]. Int J Mol Sci, 2021, 22(11): 6033. |
49 | DÍAZ-GAGO S, VICENTE-GUTIÉRREZ J, RUIZ-RODRÍGUEZ J M, et al. Autophagy sustains mitochondrial respiration and determines resistance to BRAFV600E inhibition in thyroid carcinoma cells[J]. Autophagy, 2024: 1-15. |
50 | ROY S, SUNKARA R R, PARMAR M Y, et al. EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential[J]. Front Biosci, 2021, 26(2): 238-265. |
51 | DONGRE A, WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. |
52 | ZHONG J, LIU C, ZHANG Q H, et al. TGF-β1 induces HMGA1 expression: the role of HMGA1 in thyroid cancer proliferation and invasion[J]. Int J Oncol, 2017, 50(5): 1567-1578. |
53 | KLAUS A, FATHI O, TATJANA T W, et al. Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis[J]. Pathol Oncol Res, 2018, 24(2): 289-296. |
54 | VOLATIER T, SCHUMACHER B, CURSIEFEN C, et al. UV protection in the cornea: failure and rescue[J]. Biology, 2022, 11(2): 278. |
55 | CAI X, WANG R, TAN J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J]. Clin Transl Oncol, 2021, 23(12): 2403-2414. |
56 | FENG F, YEHIA L, NI Y, et al. A nonpump function of sodium iodide symporter in thyroid cancer via cross-talk with PTEN signaling[J]. Cancer Res, 2018, 78(21): 6121-6133. |
57 | LECHNER M G, BRENT G A. A new twist on a classic: enhancing radioiodine uptake in advanced thyroid cancer[J]. Clin Cancer Res, 2024, 30(7): 1220-1222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||