
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (7): 907-914.doi: 10.3969/j.issn.1674-8115.2024.07.012
• Public health • Previous Articles Next Articles
ZHANG Yiyi1,2(
), NI Changyu1, JIN Ying3, HE Yaping1(
), FENG Nannan1(
)
Received:2024-02-26
Accepted:2024-03-19
Online:2024-07-28
Published:2024-07-28
Contact:
HE Yaping,FENG Nannan
E-mail:zhangyiyi@scdc.sh.cn;hypcyr@shsmu.edu.cn;nnfeng@shsmu.edu.cn
Supported by:CLC Number:
ZHANG Yiyi, NI Changyu, JIN Ying, HE Yaping, FENG Nannan. Effect of hypertension and dyslipidemia on cognition of urban elderly residents[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 907-914.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.07.012
| Item | Cognitive group | χ2/H value | P valve | ||
|---|---|---|---|---|---|
| Cognitive improvement (n=17) | Cognitively normal (n=450) | Cognitive decline (n=22) | |||
| Gender/n(%) | 0.84 | 0.658 | |||
| Male | 9 (52.94) | 190 (42.22) | 10 (45.45) | ||
| Female | 8 (47.06) | 260 (57.78) | 12 (54.55) | ||
| Age/year | 76.00 (72.00, 79.00) | 73.00 (70.00, 77.00) | 73.50 (70.00, 84.00) | 3.37 | 0.185 |
| Degree of education/n(%) | 7.62 | 0.022 | |||
| ≤Junior high school | 10 (58.82) | 188 (41.78) | 15 (68.18) | ||
| ≥Senior high school | 7 (41.18) | 262 (58.22)① | 7 (31.82) | ||
Tab 1 Comparison of basic demographic information between the three cognitive groups
| Item | Cognitive group | χ2/H value | P valve | ||
|---|---|---|---|---|---|
| Cognitive improvement (n=17) | Cognitively normal (n=450) | Cognitive decline (n=22) | |||
| Gender/n(%) | 0.84 | 0.658 | |||
| Male | 9 (52.94) | 190 (42.22) | 10 (45.45) | ||
| Female | 8 (47.06) | 260 (57.78) | 12 (54.55) | ||
| Age/year | 76.00 (72.00, 79.00) | 73.00 (70.00, 77.00) | 73.50 (70.00, 84.00) | 3.37 | 0.185 |
| Degree of education/n(%) | 7.62 | 0.022 | |||
| ≤Junior high school | 10 (58.82) | 188 (41.78) | 15 (68.18) | ||
| ≥Senior high school | 7 (41.18) | 262 (58.22)① | 7 (31.82) | ||
| Variable | Cognitive Group | P valve (Homogeneity of variance) | F value | P valve | ||
|---|---|---|---|---|---|---|
Cognitive improvement (n=17) | Cognitively normal (n=450) | Cognitive decline (n=22) | ||||
| TC/(mmol·L-1) | 4.38±1.04① | 5.11±1.12 | 4.87±0.94 | 0.810 | 3.87 | 0.022 |
| LDL-Ch/(mmol·L-1) | 2.51±0.92② | 3.07±1.00 | 2.67±0.76 | 0.552 | 4.06 | 0.018 |
Tab 2 Comparison of lipids between the three cognitive groups
| Variable | Cognitive Group | P valve (Homogeneity of variance) | F value | P valve | ||
|---|---|---|---|---|---|---|
Cognitive improvement (n=17) | Cognitively normal (n=450) | Cognitive decline (n=22) | ||||
| TC/(mmol·L-1) | 4.38±1.04① | 5.11±1.12 | 4.87±0.94 | 0.810 | 3.87 | 0.022 |
| LDL-Ch/(mmol·L-1) | 2.51±0.92② | 3.07±1.00 | 2.67±0.76 | 0.552 | 4.06 | 0.018 |
| Cognitive group | Variable | 2022 | 2019 | Paired Differences | t value | P value | |||
|---|---|---|---|---|---|---|---|---|---|
| Difference | Standard error of mean | 95% CI of the difference | |||||||
| Lower | Upper | ||||||||
| Cognitive decline (n=22) | TC/(mmol·L-1) | 4.87±0.94 | 4.41±0.95 | 0.46±0.87 | 0.18 | 0.08 | 0.84 | 2.49 | 0.021 |
| Cognitive improvement (n=17) | HDL-Ch/(mmol·L-1) | 1.37±0.37 | 1.21±0.36 | 0.16±0.20 | 0.47 | 0.06 | 0.26 | 3.28 | 0.005 |
Tab3 Pairwise comparison of baseline and follow-up lipids within cognitive groups
| Cognitive group | Variable | 2022 | 2019 | Paired Differences | t value | P value | |||
|---|---|---|---|---|---|---|---|---|---|
| Difference | Standard error of mean | 95% CI of the difference | |||||||
| Lower | Upper | ||||||||
| Cognitive decline (n=22) | TC/(mmol·L-1) | 4.87±0.94 | 4.41±0.95 | 0.46±0.87 | 0.18 | 0.08 | 0.84 | 2.49 | 0.021 |
| Cognitive improvement (n=17) | HDL-Ch/(mmol·L-1) | 1.37±0.37 | 1.21±0.36 | 0.16±0.20 | 0.47 | 0.06 | 0.26 | 3.28 | 0.005 |
| Independent variable | β | Std. Error | Wald | P value | OR (95%CI) |
|---|---|---|---|---|---|
| Cognitively normal (n=447) / Cognitive improvement (n=17) | |||||
| TC | 4.12 | 1.89 | 4.77 | 0.029 | 61.64 (1.52‒2 494.07) |
| Cognitive decline (n=21) / Cognitive improvement (n=17) | |||||
| TAG | 1.85 | 0.92 | 4.03 | 0.045 | 6.34 (1.05‒38.43) |
| TC | 5.88 | 2.23 | 6.96 | 0.008 | 357.35 (4.54‒28 149.75) |
| LDL-Ch | 5.61 | 2.20 | 6.49 | 0.011 | 274.06 (3.65‒20 567.57) |
| Hypertension (yes/no) | 1.90 | 0.75 | 6.40 | 0.011 | 6.69 (1.53‒29.16) |
| Cognitive decline (n=21) / cognitively normal (n=447) | |||||
| Age | 0.08 | 0.04 | 4.17 | 0.041 | 1.08 (1.00‒1.16) |
| Junior high school and below/senior high school and above | 1.22 | 0.50 | 6.08 | 0.014 | 3.39 (1.28‒8.94) |
Tab4 Multinomial Logistic regression analysis of cognitive influencing factors
| Independent variable | β | Std. Error | Wald | P value | OR (95%CI) |
|---|---|---|---|---|---|
| Cognitively normal (n=447) / Cognitive improvement (n=17) | |||||
| TC | 4.12 | 1.89 | 4.77 | 0.029 | 61.64 (1.52‒2 494.07) |
| Cognitive decline (n=21) / Cognitive improvement (n=17) | |||||
| TAG | 1.85 | 0.92 | 4.03 | 0.045 | 6.34 (1.05‒38.43) |
| TC | 5.88 | 2.23 | 6.96 | 0.008 | 357.35 (4.54‒28 149.75) |
| LDL-Ch | 5.61 | 2.20 | 6.49 | 0.011 | 274.06 (3.65‒20 567.57) |
| Hypertension (yes/no) | 1.90 | 0.75 | 6.40 | 0.011 | 6.69 (1.53‒29.16) |
| Cognitive decline (n=21) / cognitively normal (n=447) | |||||
| Age | 0.08 | 0.04 | 4.17 | 0.041 | 1.08 (1.00‒1.16) |
| Junior high school and below/senior high school and above | 1.22 | 0.50 | 6.08 | 0.014 | 3.39 (1.28‒8.94) |
| Independent variable | β | Std. Error | Wald | P value | OR (95%CI) |
|---|---|---|---|---|---|
| Cognitively normal (n=429) / Cognitive improvement (n=17) | |||||
| TC | 4.16 | 1.89 | 4.83 | 0.028 | 64.15 (1.57‒2 625.04) |
| Cognitive decline (n=21) / Cognitive improvement (n=17) | |||||
| TAG | 1.87 | 0.92 | 4.12 | 0.042 | 6.46 (1.07‒39.12) |
| TC | 5.91 | 2.23 | 7.01 | 0.008 | 369.75 (4.65‒29 412.42) |
| LDL-Ch | 5.64 | 2.20 | 6.55 | 0.010 | 280.05 (3.74‒20 964.05) |
| Hypertension (yes/no) | 1.91 | 0.75 | 6.43 | 0.011 | 6.75 (1.54‒29.52) |
| Cognitive decline (n=21) / cognitively normal (n=429) | |||||
| Age | 0.07 | 0.04 | 4.08 | 0.043 | 1.08 (1.00‒1.16) |
| Junior high school and below/senior high school and above | 1.20 | 0.50 | 5.87 | 0.015 | 3.32 (1.26‒8.77) |
Tab5 Sensitivity examination of multinomial Logistic regression analysis of cognitive influences
| Independent variable | β | Std. Error | Wald | P value | OR (95%CI) |
|---|---|---|---|---|---|
| Cognitively normal (n=429) / Cognitive improvement (n=17) | |||||
| TC | 4.16 | 1.89 | 4.83 | 0.028 | 64.15 (1.57‒2 625.04) |
| Cognitive decline (n=21) / Cognitive improvement (n=17) | |||||
| TAG | 1.87 | 0.92 | 4.12 | 0.042 | 6.46 (1.07‒39.12) |
| TC | 5.91 | 2.23 | 7.01 | 0.008 | 369.75 (4.65‒29 412.42) |
| LDL-Ch | 5.64 | 2.20 | 6.55 | 0.010 | 280.05 (3.74‒20 964.05) |
| Hypertension (yes/no) | 1.91 | 0.75 | 6.43 | 0.011 | 6.75 (1.54‒29.52) |
| Cognitive decline (n=21) / cognitively normal (n=429) | |||||
| Age | 0.07 | 0.04 | 4.08 | 0.043 | 1.08 (1.00‒1.16) |
| Junior high school and below/senior high school and above | 1.20 | 0.50 | 5.87 | 0.015 | 3.32 (1.26‒8.77) |
| 1 | FOLSTEIN M F, FOLSTEIN S E, MCHUGH P R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician[J]. J Psychiatr Res, 1975, 12(3): 189-198. |
| 2 | WALSH C E, YANG Y C, OI K, et al. Age profiles of cognitive decline and dementia in late life in the aging, demographics, and memory study[J]. J Gerontol B Psychol Sci Soc Sci, 2022, 77(10): 1880-1891. |
| 3 | World Health Organization. World health statistics 2023: monitoring health for the SDGs, sustainable development goals[M]. Geneva: WHO, 2024. |
| 4 | BUFORD T W. Hypertension and aging[J]. Ageing Res Rev, 2016, 26: 96-111. |
| 5 | DUAN J, SAM N B, WANG S J, et al. Exploring the association between cognitive decline and all-cause mortality with blood pressure as a potential modifier in oldest old individuals[J]. Sci Rep, 2022, 12(1): 17108. |
| 6 | HIRANO T. Pathophysiology of diabetic dyslipidemia[J]. J Atheroscler Thromb, 2018, 25(9): 771-782. |
| 7 | IADECOLA C, GOTTESMAN R F. Neurovascular and cognitive dysfunction in hypertension[J]. Circ Res, 2019, 124(7): 1025-1044. |
| 8 | STEWART R A H, HELD C, KRUG-GOURLEY S, et al. Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease[J]. J Am Heart Assoc, 2019, 8(7): e010641. |
| 9 | HAN K T, KIM S J. Are serum cholesterol levels associated with cognitive impairment and depression in elderly individuals without dementia: a retrospective cohort study in South Korea[J]. Int J Geriatr Psychiatry, 2021, 36(1): 163-173. |
| 10 | LESPINASSE J, CHÊNE G, MANGIN J F, et al. Associations among hypertension, dementia biomarkers, and cognition: the MEMENTO cohort[J]. Alzheimers Dement, 2023, 19(6): 2332-2342. |
| 11 | BATTISTA P, SALVATORE C, CASTIGLIONI I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study[J]. Behav Neurol, 2017, 2017: 1850909. |
| 12 | JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. |
| 13 | 刘柯杉, 竹丽萍, 吴晓敏, 等. 天津市社区老年人血脂水平与轻度认知障碍发生关系病例对照研究[J]. 中国公共卫生, 2023, 9(3): 348-352. |
| LIU K S, ZHU L P, WU X M, et al. Association of blood lipid levels with mild cognitive impairment in the elderly:community-based case-control study in Tianjin city[J]. Chinese Journal of Public Health, 2023, 9(3): 348-352. | |
| 14 | 张慧强, 李鹏飞, 郭玉洁, 等. 2017年北京两社区中老年糖尿病患者血脂水平与认知功能关联[J]. 卫生研究, 2022, 51(6): 981-987, 995. |
| ZHANG H Q, LIU P F, GUO Y J, et al. Correlation analysis of lipid level and cognitive function in middle-aged and elderly diabetic population from 2 communities in Beijing in 2017[J]. Journal of Hygiene Research, 2022, 51(6): 981-987, 995. | |
| 15 | MOONS K G, ALTMAN D G, REITSMA J B, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[J]. Ann Intern Med, 2015, 162(1): W1-W73. |
| 16 | YANG Z, HOLT H K, FAN J H, et al. Optimal cutoff scores for Alzheimer′s disease using the Chinese version of mini-mental state examination among Chinese population living in rural areas[J]. Am J Alzheimers Dis Other Demen, 2016, 31(8): 650-657. |
| 17 | LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446. |
| 18 | DECARLI C. Blood pressure control and cognitive performance: something to think about with aging[J]. JAMA, 2015, 313(19): 1963-1964. |
| 19 | KIM Y J, KWON H K, LEE J M, et al. White matter microstructural changes in pure Alzheimer′s disease and subcortical vascular dementia[J]. Eur J Neurol, 2015, 22(4): 709-716. |
| 20 | MCEVOY L K, FENNEMA-NOTESTINE C, EYLER L T, et al. Hypertension-related alterations in white matter microstructure detectable in middle age[J]. Hypertension, 2015, 66(2): 317-323. |
| 21 | SHAJAHAN S, PETERS R, CARCEL C, et al. Hypertension and mild cognitive impairment: state-of-the-art review[J]. Am J Hypertens, 2024, 37(6): 385-393. |
| 22 | GOTTESMAN R F, SCHNEIDER A L, ALBERT M, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study[J]. JAMA Neurol, 2014, 71(10): 1218-1227. |
| 23 | VAN DALEN J W, BRAYNE C, CRANE P K, et al. Association of systolic blood pressure with dementia risk and the role of age, U-shaped associations, and mortality[J]. JAMA Intern Med, 2022, 182(2): 142-152. |
| 24 | GAO H, WANG K, AHMADIZAR F, et al. Associations of changes in late-life blood pressure with cognitive impairment among older population in China[J]. BMC Geriatr, 2021, 21(1): 536. |
| 25 | WANG F, LI D, WANG L, et al. Mild hypertension protects the elderly from cognitive impairment: a 7-year retrospective cohort study[J]. Psychogeriatrics, 2020, 20(4): 412-418. |
| 26 | UNGVARI Z, TOTH P, TARANTINI S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health[J]. Nat Rev Nephrol, 2021, 17(10): 639-654. |
| 27 | VADUGANATHAN M, MENSAH G A, TURCO J V, et al. The global burden of CardiovascularDiseases and risk: a compass for future health[J]. J Am Coll Cardiol, 2022, 80(25): 2361-2371. |
| 28 | FRISARDI V, SOLFRIZZI V, SERIPA D, et al. Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer′s disease[J]. Ageing Res Rev, 2010, 9(4): 399-417. |
| 29 | ANCELIN M L, RIPOCHE E, DUPUY A M, et al. Sex differences in the associations between lipid levels and incident dementia[J]. J Alzheimers Dis, 2013, 34(2): 519-528. |
| 30 | LIU Y, ZHONG X, SHEN J J, et al. Elevated serum TC and LDL-C levels in Alzheimer′s disease and mild cognitive impairment: a meta-analysis study[J]. Brain Res, 2020, 1727: 146554. |
| 31 | GUO Y J, LI P F, MA X J, et al. Association of circulating cholesterol level with cognitive function and mild cognitive impairment in the elderly: a community-based population study[J]. Curr Alzheimer Res, 2020, 17(6): 556-565. |
| 32 | ANUSHEEL, AVULA S N, JOSEPH K N, et al. The role of high-density lipoprotein in lowering risk of dementia in the elderly: a review[J]. Cureus, 2022, 14(4): e24374. |
| 33 | SOLOMON A, KIVIPELTO M, WOLOZIN B, et al. Midlife serum cholesterol and increased risk of Alzheimer′s and vascular dementia three decades later[J]. Dement Geriatr Cogn Disord, 2009, 28(1): 75-80. |
| 34 | XU Q, LIN Y, GENG J L, et al. The prevalence and risk factors for cognitive impairment following ischemic stroke[J]. Zhonghua Nei Ke Za Zhi, 2008, 47(12): 981-984. |
| 35 | WANG M Q, LI Y J, CONG L, et al. High-density lipoprotein cholesterol and brain aging amongst rural-dwelling older adults: a population-based magnetic resonance imaging study[J]. Eur J Neurol, 2021, 28(9): 2882-2892. |
| 36 | World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines[M]. Geneva: World Health Organization; 2019. |
| 37 | DENG Y, ZHAO S Q, CHENG G W, et al. The prevalence of mild cognitive impairment among Chinese people: a meta-analysis[J]. Neuroepidemiology, 2021, 55(2): 79-91. |
| 38 | DE JONG V M T, EIJKEMANS M J C, VAN CALSTER B, et al. Sample size considerations and predictive performance of multinomial logistic prediction models[J]. Stat Med, 2019, 38(9): 1601-1619. |
| [1] | ZHANG Xingli, TIAN Jie, LUO Jing, LIU Qian, OUYANG Wanyan, QIU Hongchun, WANG Yan, MI Jianqing. Efficacy analysis in elderly and frail newly diagnosed multiple myeloma patients with dose-reduced lenalidomide/melphalan/prednisone acetate regimens [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 815-822. |
| [2] | ZHAI Wenhui, HUANG Qifang, CHEN Yilin, LI Xiaodong, WANG Jiguang. Serum osteoglycin level in relation to renal function and blood pressure in non-diabetic patients with hypertension [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 578-584. |
| [3] | CHANG Guili, LIU Changyuan, LI Mingchun, HU Zhe, CHEN Jing, CAO Qun'an, CHU Shaoli, CHEN Xin. Relationship between non-renin-dependent aldosterone and left ventricular hypertrophy in essential hypertension [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1372-1377. |
| [4] | WANG Beichen, YANG Yaoqi, BAO Qiyuan, WEN Junxiang, ZHANG Weibin, WAN Rong. Effect of early postoperative administration of zoledronic acid on the prognosis of osteoporotic femoral intertrochanteric fracture in patients with advanced ages [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 891-898. |
| [5] | HAO Mingxiu, CHEN Hongwei, WANG Junlin, TANG Yinhan, WU Yunyun, JIN Yuhua, HU Yaomin. Investigation and epidemiological analysis of chronic diseases and comorbidities in hospitalized patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 462-468. |
| [6] | FAN Qiang, WU Guangbo, ZHAO Jinbo, ZHENG Lei, LUO Meng. Research progress in pathophysiological and molecular mechanism changes during decompensated phase of portal hypertension in liver cirrhosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 379-384. |
| [7] | WANG Junlin, HAO Mingxiu, TANG Yinhan, WU Yunyun, JIN Yuhua, HU Yaomin. Study on the relationship between comorbidities of chronic diseases, phase angle, and muscle mass decline related to sarcopenia in the elderly [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 196-203. |
| [8] | JIANG Ying, LI Qingyao, CHEN Zhiqi, WANG Jialu, LI Yun, XU Renying. Association between body mass index and chronic metabolic diseases in Chinese aged population [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 250-257. |
| [9] | XU Zujing, JIANG Yining, XU Jian. Relationship between prenatal mixed heavy metal/metalloid exposure and offspring cognitive and temperament development [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1570-1578. |
| [10] | ZHAO Meng, JIANG Liting, GAO Yiming. Age-related changes of alveolar bone in maxillary posterior based on cone-beam CT [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1273-1278. |
| [11] | ZHANG Qinjie, HUANG Sui, TAN Haoyue, ZHOU Xiang, WANG Junyi, LIU Yuzi, WEN Wen, GUO Jia, WU Hao, JIA Huan. Establishment and verification of auditory brainstem implant vocoder model [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1279-1286. |
| [12] | LIU Taotao, LIU Xiaoli, WU Jingying, NI Ruilong, ZHANG Mengyuan, JI Duxin, ZHANG Mei, CAO Li. Clinical and genetic characteristics of adult cerebral adrenoleukodystrophy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 592-599. |
| [13] | MA Zhuoran, YUAN Ancai, JIANG Huiru, CHEN Xiaoyu, ZHANG Wei, PU Jun. Meta analysis of correlation between lipid accumulation product and hypertension in Chinese adults [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 466-473. |
| [14] | WU Yujing, GUO Qian, LIU Xiaohua, LI Guanjun. Progress in relationship between chronotype and technology addiction and its mechanism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 487-494. |
| [15] | WANG Yayu, JIANG Huiru, YE Mengyue, LI Ping, YUAN Ancai, ZHANG Wei, PU Jun. Association between stroke and physical activities in Shanghai Community Elderly Cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1348-1358. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||