| 1 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
| 2 |
LI X Y, MA N, XU J P, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021, 2021: 1587922.
|
| 3 |
LEI G, ZHUANG L, GAN B Y. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7): 381-396.
|
| 4 |
JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
| 5 |
YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245.
|
| 6 |
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98.
|
| 7 |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331.
|
| 8 |
SHENG Z H, ZHU J, DENG Y N, et al. SUMOylation modification-mediated cell death[J]. Open Biol, 2021, 11(7): 210050.
|
| 9 |
LIU P F, WU D, DUAN J Y, et al. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway[J]. Redox Biol, 2020, 37: 101702.
|
| 10 |
GUO H Y, XU J Q, ZHENG Q, et al. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis[J]. Cancer Lett, 2019, 466: 39-48.
|
| 11 |
ZHANG Z L, GUO M, SHEN M, et al. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells[J]. Redox Biol, 2020, 36: 101619.
|
| 12 |
KANG R, ZHU S, ZEH H J, et al. BECN1 is a new driver of ferroptosis[J]. Autophagy, 2018, 14(12): 2173-2175.
|
| 13 |
WU J, MINIKES A M, GAO M H, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406.
|
| 14 |
WU Y C, LING T Y, LU S H, et al. Chemotherapeutic sensitivity of testicular germ cell tumors under hypoxic conditions is negatively regulated by SENP1-controlled sumoylation of OCT4[J]. Cancer Res, 2012, 72(19): 4963-4973.
|
| 15 |
CUI C P, WONG C C, KAI A K, et al. SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop[J]. Gut, 2017, 66(12): 2149-2159.
|
| 16 |
ADAMS B D, CLAFFEY K P, WHITE B A. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells[J]. Endocrinology, 2009, 150(1): 14-23.
|
| 17 |
YAN L, ZHANG T, WANG K, et al. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation[J]. Nat Commun, 2022, 13(1): 7153.
|
| 18 |
YEH E T, GONG L, KAMITANI T. Ubiquitin-like proteins: new wines in new bottles[J]. Gene, 2000, 248(1/2): 1-14.
|
| 19 |
ZHOU H J, XU Z, WANG Z R, et al. Author Correction: SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis[J]. Nat Commun, 2019, 10: 3679.
|
| 20 |
DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
|
| 21 |
MAO C, LIU X G, ZHANG Y L, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590.
|
| 22 |
FENG H, SCHORPP K, JIN J, et al. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep, 2020, 30(10): 3411-3423.e7.
|
| 23 |
YUAN H, LI X, ZHANG X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478(3): 1338-1343.
|