JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (6): 834-838.doi: 10.3969/j.issn.1674-8115.2021.06.023
• Review • Previous Articles
Ming-qi CAI1(), Yan CHEN2, Kai-bin LIN1, Dong HUANG1()
Online:
2021-06-28
Published:
2021-06-29
Contact:
Dong HUANG
E-mail:cai_mingqi0123@163.com;huangdong1004@126.com
Supported by:
CLC Number:
Ming-qi CAI, Yan CHEN, Kai-bin LIN, Dong HUANG. Advances in the role of growth differentiation factor 11 in cardiovascular diseases[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 834-838.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.06.023
1 | Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015[J]. J Am Coll Cardiol, 2017, 70(1): 1-25. |
2 | Nakashima M, Toyono T, Akamine A, et al. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis[J]. Mech Dev, 1999, 80(2): 185-189. |
3 | Oxburgh L. TGF superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population[J]. Development, 2004, 131(18): 4593-4605. |
4 | Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice[J]. Dev Dyn, 2006, 235(11): 3016-3025. |
5 | Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Dev Camb Engl, 2011, 138(19): 4131-4142. |
6 | Li Z, Zeng F, Mitchell AD, et al. Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation[J]. Biochem Biophys Res Commun, 2011, 416(3): 289-292. |
7 | Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J]. Cell, 2013, 153(4): 828-839. |
8 | Zhang YH, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease[J]. Oncotarget, 2017, 8(46): 81604-81616. |
9 | Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis[J]. Crit Rev Biochem Mol Biol, 2019, 54(2): 174-183. |
10 | Kondás K, Szláma G, Trexler M, et al. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11[J]. J Biol Chem, 2008, 283(35): 23677-23684. |
11 | Jamaiyar A, Wan W, Janota DM, et al. The versatility and paradox of GDF 11[J]. Pharmacol Ther, 2017, 175: 28-34. |
12 | Roh JD, Hobson R, Chaudhari V, et al. Activin type II receptor signaling in cardiac aging and heart failure[J]. Sci Transl Med, 2019, 11(482): eaau8680. |
13 | Su HH, Liao JM, Wang YH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury[J]. Basic Res Cardiol, 2019, 114(3): 20. |
14 | Zhang YH, Cheng F, Du XT, et al. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells[J]. Oncotarget, 2016, 7(11): 12063-12074. |
15 | Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system[J]. Cardiovasc Res, 2006, 69(1): 15-25. |
16 | Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Investig, 2017, 127(10): 3770-3783. |
17 | Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction[J]. Front Cardiovasc Med, 2019, 6: 140. |
18 | Walker RG, Czepnik M, Goebel EJ, et al. Structural basis for potency differences between GDF8 and GDF11[J]. BMC Biol, 2017, 15(1): 1-22. |
19 | Tarver T. Heart disease and stroke statistics–2014 update: a report from the American heart association[J]. J Consumer Heal Internet, 2014, 18(2): 209. |
20 | Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J]. Cell Metab, 2015, 22(1): 164-174. |
21 | Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age[J]. Circ Res, 2016, 118(1): 29-37. |
22 | Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease[J]. Cell Metab, 2016, 23(6): 1207-1215. |
23 | Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts[J]. Eur Heart J, 2015, 36(48): 3426-3434. |
24 | Zhou Y, Ni SS, Song LL, et al. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri[J]. Biogerontology, 2019, 20(2): 225-239. |
25 | Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014, 344(6184): 649-652. |
26 | Ozek C, Krolewski RC, Buchanan SM, et al. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice[J]. Sci Rep, 2018, 8(1): 17293. |
27 | Li H, Li YX, Xiang LW, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet β-cell function and survival[J]. Diabetes, 2017, 66(7): 1914-1927. |
28 | Aurigemma GP. Diastolic heart failure: a common and lethal condition by any name[J]. N Engl J Med, 2006, 355(3): 308-310. |
29 | Smith SC, Zhang XX, Zhang XY, et al. GDF11 does not rescue aging-related pathological hypertrophy[J]. Circ Res, 2015, 117(11): 926-932. |
30 | Zimmers TA, Jiang YL, Wang MJ, et al. Erratum to: exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting[J]. Basic Res Cardiol, 2017, 112(5): 53. |
31 | Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload-induced hypertrophy, but can cause severe cachexia and premature death[J]. Circ Res, 2018, 123(11): 1220-1231. |
32 | Zhang CJ, Wang Y, Ge ZR, et al. GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and β-MHC through down- regulating CCL11 in mice[J]. Curr Mol Med, 2018, 18(10): 661-671. |
33 | Duran J, Troncoso M, Lagos D, et al. GDF11 modulates Ca2+-dependent Smad2/3 signaling to prevent cardiomyocyte hypertrophy[J]. Int J Mol Sci, 2018, 19(5): 1508. |
34 | Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C, et al. GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication[J]. Pharmacol Res, 2019, 146: 104273. |
35 | Garbern J, Kristl AC, Bassaneze V, et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H201-H212. |
36 | Mei W, Xiang GD, Li YX, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E-null mice[J]. Mol Ther, 2016, 24(11): 1926-1938. |
37 | Zhao L, Zhang SH, Cui J, et al. TERT assists GDF11 to rejuvenate senescent VEGFR2+/CD133+ cells in elderly patients with myocardial infarction[J]. Lab Investig J Tech Methods Pathol, 2019, 99(11): 1661-1688. |
38 | Du GQ, Shao ZB, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury[J]. Basic Res Cardiol, 2016, 112(1): 1-14. |
39 | Zhou B, Yu YL, Qiu Z, et al. GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats[J]. Acta Cir Bras, 2019, 34(11). DOI:10.1590/s0102-865020190110000006. |
40 | Zhang XJ, Tan H, Shi ZF, et al. Growth differentiation factor 11 is involved in isoproterenol-induced heart failure[J]. Mol Med Rep, 2019, 19(5): 4109-4118. |
41 | Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality?[J]. Int J Mol Sci, 2019, 20(14): 3563. |
42 | Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, et al. GDF11 implications in cancer biology and metabolism. facts and controversies[J]. Front Oncol, 2019, 9: 1039. |
[1] | Jiang-lei MA, Xiao-yao LI, Shi-fu ZHAO, De-jun YANG. Advances in diagnostic methods of clinical staging for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 821-825. |
[2] | Hua-jie DAI, Li-ping XUAN, Jia-li XIANG, Hong LIN, Zhi-yun ZHAO, Tian-ge WANG, Mian LI, Yu XU, Jie-li LU, Wei-qing WANG, Yu-fang BI, Min XU. Correlation between healthy vascular aging and prevalent cardiovascular disease risk in middle-aged and elderly people in the community of Shanghai [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 223-227. |
[3] | Lin-xiu-mei GUO, Yi-xin ZHANG. Application of skin autofluorescence detection technique to diagnosis of diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 251-256. |
[4] | Xiao-min LI, Yang QU, Shao-ting ZHANG, Liang ZHAO, Chang LIU, Shuai-ning XIE, Ke-rong DAI, Song-tao AI. Overview of the application of artificial intelligence to radiology of the musculoskeletal system [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 262-266. |
[5] | Xiu-ying LIU, Rui-fang LAN. Correlation between quantitative electroencephalogram features and CT perfusion imaging parameters in acute ischemic stroke [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 62-65. |
[6] | CHEN Mo, CHEN Jun, CHEN Shi-yi. Advances in second near-infrared fluorescent nanoprobes-based in vivo imaging for biomedical applications [J]. , 2020, 40(4): 530-. |
[7] | YANG Tao, CHEN Jun, FANG Yi-ru. Advances in magnetic resonance imaging study of bipolar Ⅰdisorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1660-1664. |
[8] | YUE Xiu-hui, KONG Wei-dan, REN Ji-liang, YUAN Ying#, TAO Xiao-feng#. Value of 3.0-T MR diffusion-weighted imaging combined with dynamic contrast-enhanced imaging in differentiating benign and malignant thyroid nodules [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1393-1397. |
[9] | LI Xiao-min1, QU Yang1, WU Wen2, ZHAO Liang3, ZHANG Shao-ting3, HAO Yong-qiang2, DAI Ke-rong2, AI Song-tao1. Preliminary application of MR imaging-pathology co-localization by 3D printing box in pelvic tumor assessment [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1408-1413. |
[10] | WANG Tao, ZHANG Chen-cheng, LI Dian-you, SUN Bo-min, FU Meng. Imaging law of postoperative electrode locations in deep brain stimulation for Parkinsons disease [J]. , 2020, 40(1): 64-. |
[11] | HAN Rui-jun, DU Jing, CHEN Cui, ZHU Cai-xia, LI Feng-hua, WANG Jia-dong. Diagnostic efficiency of ultrasound TI-RADS combined with three-dimensional shear wave elastography in thyroid microcarcinoma [J]. , 2020, 40(1): 76-. |
[12] | LUAN Wei, ZHU Zhu, ZHU Dong-ping, GE Wen-jing, ZHU Qun-mei, JIANG Yan-qing, LI Jin, JIANG An-li. Relationship of health promotion lifestyle with social support and self-efficacy of the elderly in urban-rural communities [J]. , 2020, 40(1): 107-. |
[13] | ZHU Lin, LIU Jun. Progress in biomarkers of multiple system atrophy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(09): 1302-1307. |
[14] | JI Ying-ying, XUE Bin, HUANG Yue, ZHANG Jian-wei. Efficacy and safety of oral midazolam in combination with intranasal dexmedetomidine for paediatric magnetic resonance imaging sedation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(08): 1098-1102. |
[15] | XIA Zhi-peng1, YUAN Ying2, YANG Xi2, GU Hao2, LIN Xiao-xi 2#, TAO Xiao-feng1#. Value of dynamic contrast-enhanced MRI in selecting sclerosants for endovascular sclerosis of venous malformation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(07): 873-880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||