
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (3): 259-266.doi: 10.3969/j.issn.1674-8115.2022.03.001
• Management of chronic cardiovascular and cerebrovascular diseases colum • Next Articles
ZHANG Mengji1,2,3(
), HUANG Lin4(
), LI Zheng1, MA Zhuoran1, WEI Lin1, YUAN Ancai1, HU Liuhua1, ZHANG Wei1, QIAN Kun1,2,3, PU Jun1(
)
Received:2022-01-22
Online:2022-03-28
Published:2022-05-09
Contact:
PU Jun
E-mail:zmj_xy@sjtu.edu.cn;linhuang@shsmu.edu.cn。;pujun310@hotmail.com
Supported by:CLC Number:
ZHANG Mengji, HUANG Lin, LI Zheng, MA Zhuoran, WEI Lin, YUAN Ancai, HU Liuhua, ZHANG Wei, QIAN Kun, PU Jun. Plasma metabolic signature of cardiovascular and cerebrovascular diseases from a large cohort study[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 259-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.03.001
| Item | Stroke (n=461) | CHD (n=1 608) | Stroke+CHD (n=145) | Control (n=12 205) | P value |
|---|---|---|---|---|---|
| Gender/n (%) | 0.000 | ||||
| Male | 220 (47.7) | 587 (36.5) | 50 (34.5) | 5 861 (48.0) | |
| Female | 241 (52.3) | 1 021 (63.5) | 95 (65.5) | 6 344 (52.0) | |
| Age/year | 69.0 (58.0‒90.0) | 69.0 (55.0‒89.0) | 72.0 (59.0‒87.0) | 67.0 (39.0‒96.0) | 0.000 |
| Body fat percentage/% | 24.7 (16.7‒34.3) | 24.6 (15.8‒50.0) | 24.5 (17.7‒32.4) | 24.3 (12.70‒49.92) | 0.000 |
| Height/cm | 160.0 (126.0‒183.0) | 160.0 (100.0‒184.0) | 159.0 (143.0‒175.0) | 162.0 (123.0‒193.0) | 0.000 |
| Weight/kg | 63.7 (40.7‒101.8) | 63.0 (36.0‒120.0) | 63.0 (39.8‒89.0) | 64.0 (34.7.0‒117.5) | 0.206 |
| Hypertension/n (%) | 114 (24.7) | 451 (28.0) | 31 (21.4) | 5 459 (44.7) | 0.000 |
| Diabetes/n (%) | 342 (74.2) | 1 280 (79.6) | 111 (76.6) | 10 351 (84.8) | 0.000 |
| Hyperlipidemia/n (%) | 346 (75.1) | 1 311 (81.5) | 97 (66.9) | 11 280 (92.4) | 0.000 |
Tab 1 Baseline characteristics of the study cohort
| Item | Stroke (n=461) | CHD (n=1 608) | Stroke+CHD (n=145) | Control (n=12 205) | P value |
|---|---|---|---|---|---|
| Gender/n (%) | 0.000 | ||||
| Male | 220 (47.7) | 587 (36.5) | 50 (34.5) | 5 861 (48.0) | |
| Female | 241 (52.3) | 1 021 (63.5) | 95 (65.5) | 6 344 (52.0) | |
| Age/year | 69.0 (58.0‒90.0) | 69.0 (55.0‒89.0) | 72.0 (59.0‒87.0) | 67.0 (39.0‒96.0) | 0.000 |
| Body fat percentage/% | 24.7 (16.7‒34.3) | 24.6 (15.8‒50.0) | 24.5 (17.7‒32.4) | 24.3 (12.70‒49.92) | 0.000 |
| Height/cm | 160.0 (126.0‒183.0) | 160.0 (100.0‒184.0) | 159.0 (143.0‒175.0) | 162.0 (123.0‒193.0) | 0.000 |
| Weight/kg | 63.7 (40.7‒101.8) | 63.0 (36.0‒120.0) | 63.0 (39.8‒89.0) | 64.0 (34.7.0‒117.5) | 0.206 |
| Hypertension/n (%) | 114 (24.7) | 451 (28.0) | 31 (21.4) | 5 459 (44.7) | 0.000 |
| Diabetes/n (%) | 342 (74.2) | 1 280 (79.6) | 111 (76.6) | 10 351 (84.8) | 0.000 |
| Hyperlipidemia/n (%) | 346 (75.1) | 1 311 (81.5) | 97 (66.9) | 11 280 (92.4) | 0.000 |
| Item | Basic model/ OR (95%CI) | Models with covariate analysis/OR (95%CI) | |||||
|---|---|---|---|---|---|---|---|
| Age | Body fat percentage | Height | Hypertension | Diabetes | Hyperlipidemia | ||
| CHD—control | |||||||
| Amidosulfonic acid | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) |
| Acetoacetic acid | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) |
| Methylmalonic acid | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.001 (0.899‒1.113) |
| Glucose | 0.998 (0.881‒1.131) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) |
| Galacturonic acid | 0.988 (0.888‒1.100) | 0.988 (0.888‒1.099) | 0.987 (0.887‒1.099) | 0.989 (0.889‒1.100) | 0.986 (0.886‒1.097) | 0.990 (0.889‒1.101) | 0.989 (0.888‒1.100) |
| α-linolenic acid | 1.003 (0.887‒1.133) | 1.003 (0.887‒1.133) | 1.004 (0.888‒1.134) | 1.000 (0.885‒1.130) | 1.003 (0.888‒1.133) | 1.006 (0.890‒1.136) | 1.006 (0.890‒1.137) |
| Stroke—control | |||||||
| Amidosulfonic acid | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) |
| Acetoacetic acid | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.998 (0.822‒1.211) |
| Methylmalonic acid | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.213) |
| Glucose | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.270) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.003 (0.790‒1.271) |
| Galacturonic acid | 1.015 (0.838‒1.230) | 1.013 (0.837‒1.228) | 1.014 (0.837‒1.228) | 1.015 (0.838‒1.229) | 1.012 (0.836‒1.226) | 1.017 (0.839‒1.231) | 1.017 (0.839‒1.231) |
| α-linolenic acid | 1.078 (0.847‒1.371) | 1.070 (0.841‒1.361) | 1.080 (0.849‒1.373) | 1.072 (0.843‒1.364) | 1.078 (0.847‒1.371) | 1.083 (0.851‒1.377) | 1.084 (0.852‒1.379) |
| (CHD+stroke)—control | |||||||
| Amidosulfonic acid | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.713‒1.401) |
| Acetoacetic acid | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.397) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) |
| Methylmalonic acid | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) |
| Glucose | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.984 (0.660‒1.467) |
| Galacturonic acid | 0.897 (0.640‒1.258) | 0.896 (0.639‒1.257) | 0.896 (0.639‒1.257) | 0.898 (0.641‒1.259) | 0.894 (0.638‒1.254) | 0.899 (0.641‒1.260) | 0.902 (0.643‒1.264) |
| α-linolenic acid | 0.799 (0.542‒1.179) | 0.792 (0.537‒1.169) | 0.801 (0.543‒1.181) | 0.789 (0.535‒1.164) | 0.796 (0.540‒1.174) | 0.803 (0.544‒1.185) | 0.807 (0.547‒1.191) |
Tab 2 Assessment of clinical baseline indicators and comorbidity metabolic diseases impact on selected biomarkers
| Item | Basic model/ OR (95%CI) | Models with covariate analysis/OR (95%CI) | |||||
|---|---|---|---|---|---|---|---|
| Age | Body fat percentage | Height | Hypertension | Diabetes | Hyperlipidemia | ||
| CHD—control | |||||||
| Amidosulfonic acid | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) |
| Acetoacetic acid | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) |
| Methylmalonic acid | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.001 (0.899‒1.113) |
| Glucose | 0.998 (0.881‒1.131) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) |
| Galacturonic acid | 0.988 (0.888‒1.100) | 0.988 (0.888‒1.099) | 0.987 (0.887‒1.099) | 0.989 (0.889‒1.100) | 0.986 (0.886‒1.097) | 0.990 (0.889‒1.101) | 0.989 (0.888‒1.100) |
| α-linolenic acid | 1.003 (0.887‒1.133) | 1.003 (0.887‒1.133) | 1.004 (0.888‒1.134) | 1.000 (0.885‒1.130) | 1.003 (0.888‒1.133) | 1.006 (0.890‒1.136) | 1.006 (0.890‒1.137) |
| Stroke—control | |||||||
| Amidosulfonic acid | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) |
| Acetoacetic acid | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.998 (0.822‒1.211) |
| Methylmalonic acid | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.213) |
| Glucose | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.270) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.003 (0.790‒1.271) |
| Galacturonic acid | 1.015 (0.838‒1.230) | 1.013 (0.837‒1.228) | 1.014 (0.837‒1.228) | 1.015 (0.838‒1.229) | 1.012 (0.836‒1.226) | 1.017 (0.839‒1.231) | 1.017 (0.839‒1.231) |
| α-linolenic acid | 1.078 (0.847‒1.371) | 1.070 (0.841‒1.361) | 1.080 (0.849‒1.373) | 1.072 (0.843‒1.364) | 1.078 (0.847‒1.371) | 1.083 (0.851‒1.377) | 1.084 (0.852‒1.379) |
| (CHD+stroke)—control | |||||||
| Amidosulfonic acid | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.713‒1.401) |
| Acetoacetic acid | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.397) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) |
| Methylmalonic acid | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) |
| Glucose | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.984 (0.660‒1.467) |
| Galacturonic acid | 0.897 (0.640‒1.258) | 0.896 (0.639‒1.257) | 0.896 (0.639‒1.257) | 0.898 (0.641‒1.259) | 0.894 (0.638‒1.254) | 0.899 (0.641‒1.260) | 0.902 (0.643‒1.264) |
| α-linolenic acid | 0.799 (0.542‒1.179) | 0.792 (0.537‒1.169) | 0.801 (0.543‒1.181) | 0.789 (0.535‒1.164) | 0.796 (0.540‒1.174) | 0.803 (0.544‒1.185) | 0.807 (0.547‒1.191) |
| 1 | 国家心血管病中心. 中国心血管健康与疾病报告2019[M]. 北京: 科学出版社, 2020. |
| 2 | XU W, LIN J X, GAO M, et al. Rapid computer-aided diagnosis of stroke by serum metabolic fingerprint based multi-modal recognition[J]. Adv Sci Weinheim Baden Wurttemberg Ger, 2020, 7(21): 2002021. |
| 3 | ZHANG M J, HUANG L, YANG J, et al. Ultra-fast label-free serum metabolic diagnosis of coronary heart disease via a deep stabilizer[J]. Adv Sci Weinheim Baden Wurttemberg Ger, 2021, 8(18): e2101333. |
| 4 | HUANG L, WANG L, HU X M, et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma[J]. Nat Commun, 2020, 11(1): 3556. |
| 5 | REIF B, ASHBROOK S E, EMSLEY L, et al. Solid-state NMR spectroscopy [J]. Nat Rev Methods Primers, 2021, 1: 2. |
| 6 | YUAN M, KREMER D M, HUANG H, et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS[J]. Nat Protoc, 2019, 14(2): 313-330. |
| 7 | ZHENG F J, ZHAO X J, ZENG Z D, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry[J]. Nat Protoc, 2020, 15(8): 2519-2537. |
| 8 | HUANG L, WAN J J, WEI X, et al. Plasmonic silver nanoshells for drug and metabolite detection[J]. Nat Commun, 2017, 8(1): 220. |
| 9 | SU H Y, LI X X, HUANG L, et al. Plasmonic alloys reveal a distinct metabolic phenotype of early gastric cancer[J]. Adv Mater Deerfield Beach Fla, 2021, 33(17): e2007978. |
| 10 | YANG J, WANG R, HUANG L, et al. Urine metabolic fingerprints encode subtypes of kidney diseases[J]. Angewandte Chemie Int Ed Engl, 2020, 59(4): 1703-1710. |
| 11 | KHERA A V, KATHIRESAN S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. |
| 12 | KATHIRESAN S, SRIVASTAVA D. Genetics of human cardiovascular disease[J]. Cell, 2012, 148(6): 1242-1257. |
| 13 | LACAZE P, SEBRA R, RIAZ M, et al. Genetic variants associated with inherited cardiovascular disorders among 13 131 asymptomatic older adults of European descent[J]. NPJ Genom Med, 2021, 6(1): 51. |
| 14 | MOKOU M, LYGIROU V, VLAHOU A, et al. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation[J]. Expert Rev Proteom, 2017, 14(2): 117-136. |
| 15 | KHAN A, SHIN M S, JEE S H, et al. Global metabolomics analysis of serum from humans at risk of thrombotic stroke[J]. Anal, 2020, 145(5): 1695-1705. |
| 16 | 任繁栋, 丁筱雪, 蔡芳, 等. 基于超高效液相色谱-高分辨质谱联用技术研究冠心病及冠心病合并2型糖尿病患者代谢特征[J]. 分析化学, 2020, 48(01): 49-56. |
| 17 | HOLEČEK M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements[J]. Nutr Metab, 2018, 15: 33. |
| 18 | KOLB H, KEMPF K, RÖHLING M, et al. Ketone bodies: from enemy to friend and guardian angel[J]. BMC Med, 2021, 19(1): 313. |
| 19 | ZHANG L, LIU C D, JIANG Q Y, et al. Butyrate in energy metabolism: there is still more to learn[J]. Trends Endocrinol Metab TEM, 2021, 32(3): 159-169. |
| 20 | YURISTA S R, CHONG C R, BADIMON J J, et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(13): 1660-1669. |
| 21 | KATHARINA L. New roles for gluconeogenesis in vertebrates[J]. Curr Opin Syst Biol, 2021, 28: 100389. |
| 22 | PACKER M, ANKER S D, BUTLER J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. |
| 23 | YURISTA S R, CHONG C R, BADIMON J J, et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: jacc state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(13): 1660-1669. |
| [1] | XU Tongtong, RUAN Huitong. Effects of hydrogel microspheres loaded with interleukin-4 on neural functional recovery by modulating the immune microenvironment after stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1161-1170. |
| [2] | HUANG Xin, LIU Jiahui, YE Jingwen, QIAN Wenli, XU Wanxing, WANG Lin. Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1009-1016. |
| [3] | LI Yaomin, XU Jianguo, YU Xia. Brugada phenocopy induced by heatstroke: a case report [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 523-528. |
| [4] | XU Wanxing, WANG Lin, GUO Qiaomei, WANG Xueqing, LOU Jiatao. Clinical validation and application value exploration of multi-modal pulmonary nodule diagnosis model [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 1030-1036. |
| [5] | ZHONG Jiaqi, CAO Wenfei, ZHOU Huizhong, YANG Jiajun. Research progress in systemic complications induced by autonomic dysfunction after acute ischemic stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 928-934. |
| [6] | WU Lirong, CHEN Ruihua, CHAO Xiaowen, GUO Yuhuai, SUN Tao, LI Mengci, CHEN Tianlu. Study of metabolic association between elevated fasting blood glucose and cognitive deterioration [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 212-222. |
| [7] | LI Yang, MA Jun, DU Yihong, XU Li, CHEN Hanfen, QIU Xunhan, JIANG Meng, PU Jun. Correlation between body compositions and cardiopulmonary fitness in patients with coronary heart disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 72-78. |
| [8] | DONG Haiping, XIE Haiyi, MA Xiaoxiao, WANG Zhenhong. Mechanism of blood-brain barrier damage caused by the inhibition of Wnt7/β-catenin pathway induced by endoplasmic reticulum stress in cerebrovascular endothelial cells after stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 829-838. |
| [9] | WANG Yayu, JIANG Huiru, YE Mengyue, LI Ping, YUAN Ancai, ZHANG Wei, PU Jun. Association between stroke and physical activities in Shanghai Community Elderly Cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1348-1358. |
| [10] | ZHAO Qian, WANG Ying, HAMULATI Xieyire, TUERXUN Gulijiehere, LI Xiaomei, YANG Yining. Correlation analysis between sleep quality and carotid atherosclerosis in low and moderate risk individuals for cardiovascular and cerebrovascular diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1366-1373. |
| [11] | NI Ruilong, ZHAO Fei, CAO Li, DENG Jiangshan. Analysis of early efficacy and safety of endovascular therapy for acute mild ischemic stroke with large vessel occlusion [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1268-1273. |
| [12] | JIANG Wenqun, HOU Pinpin, CHEN Yan, JIA Feng, ZHANG Xiaohua, GAO Li, HU Qin. Characteristics and clinical significance of serum renalase in patients with acute ischemic stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 29-35. |
| [13] | LIU Xia, WEN Fule, ZHANG Yaqing. Path analysis of influencing factors of outpatient cardiac rehabilitation program participation of patients with coronary heart disease in Shanghai [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1110-1115. |
| [14] | WEI Xuemin, GAO Chengjin. Research progress of clinical application of ASPECT score in acute ischemic stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 919-924. |
| [15] | LIANG Cunyu, ZHAO Qian, SONG Ning, MEN Li, CHEN Qingjie, CHU Junkun, PU Jun, LI Xiaomei, YANG Yining. Evaluation of the management effect of "Internet+"-based wearable ECG devices in coronary heart disease patients undergoing PCI [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 275-281. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||