Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (3): 259-266.doi: 10.3969/j.issn.1674-8115.2022.03.001
• Management of chronic cardiovascular and cerebrovascular diseases colum • Next Articles
ZHANG Mengji1,2,3(), HUANG Lin4(), LI Zheng1, MA Zhuoran1, WEI Lin1, YUAN Ancai1, HU Liuhua1, ZHANG Wei1, QIAN Kun1,2,3, PU Jun1()
Received:
2022-01-22
Online:
2022-03-28
Published:
2022-05-09
Contact:
PU Jun
E-mail:zmj_xy@sjtu.edu.cn;linhuang@shsmu.edu.cn。;pujun310@hotmail.com
Supported by:
CLC Number:
ZHANG Mengji, HUANG Lin, LI Zheng, MA Zhuoran, WEI Lin, YUAN Ancai, HU Liuhua, ZHANG Wei, QIAN Kun, PU Jun. Plasma metabolic signature of cardiovascular and cerebrovascular diseases from a large cohort study[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 259-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.03.001
Item | Stroke (n=461) | CHD (n=1 608) | Stroke+CHD (n=145) | Control (n=12 205) | P value |
---|---|---|---|---|---|
Gender/n (%) | 0.000 | ||||
Male | 220 (47.7) | 587 (36.5) | 50 (34.5) | 5 861 (48.0) | |
Female | 241 (52.3) | 1 021 (63.5) | 95 (65.5) | 6 344 (52.0) | |
Age/year | 69.0 (58.0‒90.0) | 69.0 (55.0‒89.0) | 72.0 (59.0‒87.0) | 67.0 (39.0‒96.0) | 0.000 |
Body fat percentage/% | 24.7 (16.7‒34.3) | 24.6 (15.8‒50.0) | 24.5 (17.7‒32.4) | 24.3 (12.70‒49.92) | 0.000 |
Height/cm | 160.0 (126.0‒183.0) | 160.0 (100.0‒184.0) | 159.0 (143.0‒175.0) | 162.0 (123.0‒193.0) | 0.000 |
Weight/kg | 63.7 (40.7‒101.8) | 63.0 (36.0‒120.0) | 63.0 (39.8‒89.0) | 64.0 (34.7.0‒117.5) | 0.206 |
Hypertension/n (%) | 114 (24.7) | 451 (28.0) | 31 (21.4) | 5 459 (44.7) | 0.000 |
Diabetes/n (%) | 342 (74.2) | 1 280 (79.6) | 111 (76.6) | 10 351 (84.8) | 0.000 |
Hyperlipidemia/n (%) | 346 (75.1) | 1 311 (81.5) | 97 (66.9) | 11 280 (92.4) | 0.000 |
Tab 1 Baseline characteristics of the study cohort
Item | Stroke (n=461) | CHD (n=1 608) | Stroke+CHD (n=145) | Control (n=12 205) | P value |
---|---|---|---|---|---|
Gender/n (%) | 0.000 | ||||
Male | 220 (47.7) | 587 (36.5) | 50 (34.5) | 5 861 (48.0) | |
Female | 241 (52.3) | 1 021 (63.5) | 95 (65.5) | 6 344 (52.0) | |
Age/year | 69.0 (58.0‒90.0) | 69.0 (55.0‒89.0) | 72.0 (59.0‒87.0) | 67.0 (39.0‒96.0) | 0.000 |
Body fat percentage/% | 24.7 (16.7‒34.3) | 24.6 (15.8‒50.0) | 24.5 (17.7‒32.4) | 24.3 (12.70‒49.92) | 0.000 |
Height/cm | 160.0 (126.0‒183.0) | 160.0 (100.0‒184.0) | 159.0 (143.0‒175.0) | 162.0 (123.0‒193.0) | 0.000 |
Weight/kg | 63.7 (40.7‒101.8) | 63.0 (36.0‒120.0) | 63.0 (39.8‒89.0) | 64.0 (34.7.0‒117.5) | 0.206 |
Hypertension/n (%) | 114 (24.7) | 451 (28.0) | 31 (21.4) | 5 459 (44.7) | 0.000 |
Diabetes/n (%) | 342 (74.2) | 1 280 (79.6) | 111 (76.6) | 10 351 (84.8) | 0.000 |
Hyperlipidemia/n (%) | 346 (75.1) | 1 311 (81.5) | 97 (66.9) | 11 280 (92.4) | 0.000 |
Item | Basic model/ OR (95%CI) | Models with covariate analysis/OR (95%CI) | |||||
---|---|---|---|---|---|---|---|
Age | Body fat percentage | Height | Hypertension | Diabetes | Hyperlipidemia | ||
CHD—control | |||||||
Amidosulfonic acid | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) |
Acetoacetic acid | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) |
Methylmalonic acid | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.001 (0.899‒1.113) |
Glucose | 0.998 (0.881‒1.131) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) |
Galacturonic acid | 0.988 (0.888‒1.100) | 0.988 (0.888‒1.099) | 0.987 (0.887‒1.099) | 0.989 (0.889‒1.100) | 0.986 (0.886‒1.097) | 0.990 (0.889‒1.101) | 0.989 (0.888‒1.100) |
α-linolenic acid | 1.003 (0.887‒1.133) | 1.003 (0.887‒1.133) | 1.004 (0.888‒1.134) | 1.000 (0.885‒1.130) | 1.003 (0.888‒1.133) | 1.006 (0.890‒1.136) | 1.006 (0.890‒1.137) |
Stroke—control | |||||||
Amidosulfonic acid | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) |
Acetoacetic acid | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.998 (0.822‒1.211) |
Methylmalonic acid | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.213) |
Glucose | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.270) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.003 (0.790‒1.271) |
Galacturonic acid | 1.015 (0.838‒1.230) | 1.013 (0.837‒1.228) | 1.014 (0.837‒1.228) | 1.015 (0.838‒1.229) | 1.012 (0.836‒1.226) | 1.017 (0.839‒1.231) | 1.017 (0.839‒1.231) |
α-linolenic acid | 1.078 (0.847‒1.371) | 1.070 (0.841‒1.361) | 1.080 (0.849‒1.373) | 1.072 (0.843‒1.364) | 1.078 (0.847‒1.371) | 1.083 (0.851‒1.377) | 1.084 (0.852‒1.379) |
(CHD+stroke)—control | |||||||
Amidosulfonic acid | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.713‒1.401) |
Acetoacetic acid | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.397) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) |
Methylmalonic acid | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) |
Glucose | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.984 (0.660‒1.467) |
Galacturonic acid | 0.897 (0.640‒1.258) | 0.896 (0.639‒1.257) | 0.896 (0.639‒1.257) | 0.898 (0.641‒1.259) | 0.894 (0.638‒1.254) | 0.899 (0.641‒1.260) | 0.902 (0.643‒1.264) |
α-linolenic acid | 0.799 (0.542‒1.179) | 0.792 (0.537‒1.169) | 0.801 (0.543‒1.181) | 0.789 (0.535‒1.164) | 0.796 (0.540‒1.174) | 0.803 (0.544‒1.185) | 0.807 (0.547‒1.191) |
Tab 2 Assessment of clinical baseline indicators and comorbidity metabolic diseases impact on selected biomarkers
Item | Basic model/ OR (95%CI) | Models with covariate analysis/OR (95%CI) | |||||
---|---|---|---|---|---|---|---|
Age | Body fat percentage | Height | Hypertension | Diabetes | Hyperlipidemia | ||
CHD—control | |||||||
Amidosulfonic acid | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.898‒1.113) | 1.000 (0.899‒1.113) |
Acetoacetic acid | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) | 1.001 (0.899‒1.115) |
Methylmalonic acid | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.000 (0.899‒1.113) | 1.001 (0.899‒1.113) |
Glucose | 0.998 (0.881‒1.131) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) | 0.998 (0.881‒1.132) |
Galacturonic acid | 0.988 (0.888‒1.100) | 0.988 (0.888‒1.099) | 0.987 (0.887‒1.099) | 0.989 (0.889‒1.100) | 0.986 (0.886‒1.097) | 0.990 (0.889‒1.101) | 0.989 (0.888‒1.100) |
α-linolenic acid | 1.003 (0.887‒1.133) | 1.003 (0.887‒1.133) | 1.004 (0.888‒1.134) | 1.000 (0.885‒1.130) | 1.003 (0.888‒1.133) | 1.006 (0.890‒1.136) | 1.006 (0.890‒1.137) |
Stroke—control | |||||||
Amidosulfonic acid | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) | 0.999 (0.825‒1.211) |
Acetoacetic acid | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.998 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.997 (0.822‒1.211) | 0.998 (0.822‒1.211) |
Methylmalonic acid | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.213) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.212) | 0.999 (0.823‒1.213) |
Glucose | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.270) | 1.002 (0.790‒1.271) | 1.002 (0.790‒1.271) | 1.003 (0.790‒1.271) |
Galacturonic acid | 1.015 (0.838‒1.230) | 1.013 (0.837‒1.228) | 1.014 (0.837‒1.228) | 1.015 (0.838‒1.229) | 1.012 (0.836‒1.226) | 1.017 (0.839‒1.231) | 1.017 (0.839‒1.231) |
α-linolenic acid | 1.078 (0.847‒1.371) | 1.070 (0.841‒1.361) | 1.080 (0.849‒1.373) | 1.072 (0.843‒1.364) | 1.078 (0.847‒1.371) | 1.083 (0.851‒1.377) | 1.084 (0.852‒1.379) |
(CHD+stroke)—control | |||||||
Amidosulfonic acid | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.999 (0.713‒1.401) |
Acetoacetic acid | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.397) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) | 0.997 (0.711‒1.398) |
Methylmalonic acid | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.998 (0.712‒1.401) | 0.999 (0.712‒1.401) |
Glucose | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.983 (0.659‒1.466) | 0.984 (0.660‒1.467) |
Galacturonic acid | 0.897 (0.640‒1.258) | 0.896 (0.639‒1.257) | 0.896 (0.639‒1.257) | 0.898 (0.641‒1.259) | 0.894 (0.638‒1.254) | 0.899 (0.641‒1.260) | 0.902 (0.643‒1.264) |
α-linolenic acid | 0.799 (0.542‒1.179) | 0.792 (0.537‒1.169) | 0.801 (0.543‒1.181) | 0.789 (0.535‒1.164) | 0.796 (0.540‒1.174) | 0.803 (0.544‒1.185) | 0.807 (0.547‒1.191) |
1 | 国家心血管病中心. 中国心血管健康与疾病报告2019[M]. 北京: 科学出版社, 2020. |
2 | XU W, LIN J X, GAO M, et al. Rapid computer-aided diagnosis of stroke by serum metabolic fingerprint based multi-modal recognition[J]. Adv Sci Weinheim Baden Wurttemberg Ger, 2020, 7(21): 2002021. |
3 | ZHANG M J, HUANG L, YANG J, et al. Ultra-fast label-free serum metabolic diagnosis of coronary heart disease via a deep stabilizer[J]. Adv Sci Weinheim Baden Wurttemberg Ger, 2021, 8(18): e2101333. |
4 | HUANG L, WANG L, HU X M, et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma[J]. Nat Commun, 2020, 11(1): 3556. |
5 | REIF B, ASHBROOK S E, EMSLEY L, et al. Solid-state NMR spectroscopy [J]. Nat Rev Methods Primers, 2021, 1: 2. |
6 | YUAN M, KREMER D M, HUANG H, et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS[J]. Nat Protoc, 2019, 14(2): 313-330. |
7 | ZHENG F J, ZHAO X J, ZENG Z D, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry[J]. Nat Protoc, 2020, 15(8): 2519-2537. |
8 | HUANG L, WAN J J, WEI X, et al. Plasmonic silver nanoshells for drug and metabolite detection[J]. Nat Commun, 2017, 8(1): 220. |
9 | SU H Y, LI X X, HUANG L, et al. Plasmonic alloys reveal a distinct metabolic phenotype of early gastric cancer[J]. Adv Mater Deerfield Beach Fla, 2021, 33(17): e2007978. |
10 | YANG J, WANG R, HUANG L, et al. Urine metabolic fingerprints encode subtypes of kidney diseases[J]. Angewandte Chemie Int Ed Engl, 2020, 59(4): 1703-1710. |
11 | KHERA A V, KATHIRESAN S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. |
12 | KATHIRESAN S, SRIVASTAVA D. Genetics of human cardiovascular disease[J]. Cell, 2012, 148(6): 1242-1257. |
13 | LACAZE P, SEBRA R, RIAZ M, et al. Genetic variants associated with inherited cardiovascular disorders among 13 131 asymptomatic older adults of European descent[J]. NPJ Genom Med, 2021, 6(1): 51. |
14 | MOKOU M, LYGIROU V, VLAHOU A, et al. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation[J]. Expert Rev Proteom, 2017, 14(2): 117-136. |
15 | KHAN A, SHIN M S, JEE S H, et al. Global metabolomics analysis of serum from humans at risk of thrombotic stroke[J]. Anal, 2020, 145(5): 1695-1705. |
16 | 任繁栋, 丁筱雪, 蔡芳, 等. 基于超高效液相色谱-高分辨质谱联用技术研究冠心病及冠心病合并2型糖尿病患者代谢特征[J]. 分析化学, 2020, 48(01): 49-56. |
17 | HOLEČEK M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements[J]. Nutr Metab, 2018, 15: 33. |
18 | KOLB H, KEMPF K, RÖHLING M, et al. Ketone bodies: from enemy to friend and guardian angel[J]. BMC Med, 2021, 19(1): 313. |
19 | ZHANG L, LIU C D, JIANG Q Y, et al. Butyrate in energy metabolism: there is still more to learn[J]. Trends Endocrinol Metab TEM, 2021, 32(3): 159-169. |
20 | YURISTA S R, CHONG C R, BADIMON J J, et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(13): 1660-1669. |
21 | KATHARINA L. New roles for gluconeogenesis in vertebrates[J]. Curr Opin Syst Biol, 2021, 28: 100389. |
22 | PACKER M, ANKER S D, BUTLER J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. |
23 | YURISTA S R, CHONG C R, BADIMON J J, et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: jacc state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(13): 1660-1669. |
[1] | LIANG Cunyu, ZHAO Qian, SONG Ning, MEN Li, CHEN Qingjie, CHU Junkun, PU Jun, LI Xiaomei, YANG Yining. Evaluation of the management effect of "Internet+"-based wearable ECG devices in coronary heart disease patients undergoing PCI [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 275-281. |
[2] | JIANG Huiru, LI Zheng, MA Zhuoran, WEI Lin, YUAN Ancai, HU Liuhua, CHEN Xiaoyu, GUO Yunyue, ZHANG Wei, PU Jun. Baseline characteristics and lifestyle factors of single and co-morbidity of cardio-cerebrovascular diseases in Shanghai Community Elderly Cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 282-289. |
[3] | Jiyu HAN, Yanhong WANG, Daqian WAN. Research progress and development trend of lower extremity exoskeleton rehabilitation robot [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 241-246. |
[4] | Xu-guang CHEN, Sheng-yi SHI, Lan HU, Yu CHEN, Yi-ming LU, Jing YE. Evaluative value of plasma fibrin degradation product in early prognosis of patients with hemorrhagic stroke [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 612-616. |
[5] | Xiu-ying LIU, Rui-fang LAN. Correlation between quantitative electroencephalogram features and CT perfusion imaging parameters in acute ischemic stroke [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 62-65. |
[6] | LIU Yi-sheng1, ZHAN Yan-li2, PAN Hui1, YIN Jia-wen1, HU Yue1, CAI Xue-li2#, LIU Jian-ren1#. Comparison of outcomes after thrombectomy in patients with embolic stroke of undetermined source and cardiogenic stroke [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1270-1276. |
[7] | XU Jing-han, HE Xin-wei, LI Qiang, BAO Guan-shui. Study on the prognosis of intravenous thrombolysis in patients with ischemic strokethyroid-related hormones and antibodies [J]. , 2020, 40(4): 478-. |
[8] | HUANG Ting-ting, LI Yan, ZHANG Yue-man, ZHOU Na-ying, FAN Ren-hui, LI Pei-ying. Two-photon in vivo imaging of blood brain barrier injury in the ultra-early stage of cerebral ischemic stroke [J]. , 2019, 39(9): 998-. |
[9] | ZHUANG Mei-ting, HE Xin-wei, ZHAO Rong, YIN Jia-wen, HU Yue, LIU Jian-ren. Correlation between plasma brain natriuretic peptide and functional outcome after intravenous thrombolysis in patients with acute ischemic stroke [J]. , 2019, 39(9): 1065-. |
[10] | HE Hong1, 2, LIU Yi-sheng1, ZHAO Rong1, LI Ge-fei1, SHI Yan-hui1, LI Yi3, LIU Jian-ren1. Impact of multiple thrombectomy on outcomes of patients with acute ischemic stroke [J]. , 2019, 39(7): 764-. |
[11] | ZHANG Cui-ping, OUYANG Xiao-chun, YU Xiao-li, XIONG Wen-juan, WANG Yan-qiu, MA Yao. Relationship between glomerular filtration rate and acute ischemic stroke in middle-aged and elderly population [J]. , 2019, 39(1): 65-. |
[12] | HU Yue, HE Xin-wei, LIU Yi-sheng, ZHAO Rong, LIU Jian-ren. Application of mechanical thrombectomy in the patients with wake-up stroke [J]. , 2018, 38(9): 1128-. |
[13] | LIANG Dan-dan, LI Yi-tao, ZHENG Xiao-jiao, CHEN Tian-lu. Advance in full-functional software of metabolomics [J]. , 2018, 38(7): 805-. |
[14] | HUANG Jin-guo1*, ZHANG Hai-nan1*, CHEN Zi-qing1*, YANG Li-na2, GUO Shu-juan1, TAO Sheng-ce1. Metabolomics study of the effect of arsenic trioxide on hepatocellular carcinoma cell line HepG2 [J]. , 2018, 38(10): 1145-. |
[15] | LI Jing, LIU Si, LEI He-hua, WANG Yu-lan, TANG Hui-ru. Gender dependence of metabolomic phenotypes for human saliva using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry [J]. , 2017, 37(8): 1079-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||