Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (2): 222-229.doi: 10.3969/j.issn.1674-8115.2023.02.012
• Review • Previous Articles
GUO Liqiang(), ZHAO Shitian, SHU Bing()
Received:
2022-03-19
Accepted:
2022-06-18
Online:
2023-02-28
Published:
2023-02-28
Contact:
SHU Bing
E-mail:glqdoctor@163.com;siren17721101@163.com
Supported by:
CLC Number:
GUO Liqiang, ZHAO Shitian, SHU Bing. Research progress in the roles of Notch signaling pathway during fracture healing[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 222-229.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.02.012
1 | FORTINI M E. Introduction: Notch in development and disease[J]. Semin Cell Dev Biol, 2012, 23(4): 419-420. |
2 | SIEBEL C, LENDAHL U. Notch signaling in development, tissue homeostasis, and disease[J]. Physiol Rev, 2017, 97(4): 1235-1294. |
3 | YU J, CANALIS E. Notch and the regulation of osteoclast differentiation and function[J]. Bone, 2020, 138: 115474. |
4 | SHAYA O, BINSHTOK U, HERSCH M, et al. Cell-cell contact area affects Notch signaling and Notch-dependent patterning[J]. Dev Cell, 2017, 40(5): 505-511.e6. |
5 | KOPAN R, ILAGAN M X G. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell, 2009, 137(2): 216-233. |
6 | LI L, TANG P, LI S, et al. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy[J]. Med Oncol, 2017, 34(10): 180. |
7 | FAYYAZ S, ATTAR R, XU B J, et al. Realizing the potential of blueberry as natural inhibitor of metastasis and powerful apoptosis inducer: tapping the treasure trove for effective regulation of cell signaling pathways[J]. Anticancer Agents Med Chem, 2020, 20(15): 1780-1786. |
8 | EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1): 45-54. |
9 | ONO T, TAKAYANAGI H. Osteoimmunology in bone fracture healing[J]. Curr Osteoporos Rep, 2017, 15(4): 367-375. |
10 | DISHOWITZ M I, MUTYABA P L, TAKACS J D, et al. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing[J]. PLoS One, 2013, 8(7): e68726. |
11 | NOVAK S, ROEDER E, SINDER B P, et al. Modulation of Notch1 signaling regulates bone fracture healing[J]. J Orthop Res, 2020, 38(11): 2350-2361. |
12 | WU A C, RAGGATT L J, ALEXANDER K A, et al. Unraveling macrophage contributions to bone repair[J]. Bonekey Rep, 2013, 2: 373. |
13 | LOI F, CÓRDOVA L A, PAJARINEN J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130. |
14 | KEEWAN E, NASER S A. The role of Notch signaling in macrophages during inflammation and infection: implication in rheumatoid arthritis?[J]. Cells, 2020, 9(1): 111. |
15 | HILTON M J, TU X L, WU X M, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation[J]. Nat Med, 2008, 14(3): 306-314. |
16 | ZHANG Q H, WANG C M, LIU Z L, et al. Notch signal suppresses toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor κB activation[J]. J Biol Chem, 2012, 287(9): 6208-6217. |
17 | HALL S R R, JIANG Y J, LEARY E, et al. Identification and isolation of small CD44-negative mesenchymal stem/progenitor cells from human bone marrow using elutriation and polychromatic flow cytometry[J]. Stem Cells Transl Med, 2013, 2(8): 567-578. |
18 | SONG K, HUANG M Q, SHI Q, et al. Cultivation and identification of rat bone marrow-derived mesenchymal stem cells[J]. Mol Med Rep, 2014, 10(2): 755-760. |
19 | GU Q L, CAI Y, HUANG C, et al. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation[J]. Pharmacogn Mag, 2012, 8(31): 202-208. |
20 | SHAO J, ZHANG W W, YANG T Y. Using mesenchymal stem cells as a therapy for bone regeneration and repairing[J]. Biol Res, 2015, 48(1): 62. |
21 | DISHOWITZ M I, TERKHORN S P, BOSTIC S A, et al. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration[J]. J Orthop Res, 2012, 30(2): 296-303. |
22 | MATTHEWS B G, GRCEVIC D, WANG L P, et al. Analysis of αSMA-labeled progenitor cell commitment identifies Notch signaling as an important pathway in fracture healing[J]. J Bone Miner Res, 2014, 29(5): 1283-1294. |
23 | WANG C, INZANA J A, MIRANDO A J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair[J]. J Clin Invest, 2016, 126(4): 1471-1481. |
24 | MUGURUMA Y, HOZUMI K, WARITA H, et al. Maintenance of bone homeostasis by DLL1-mediated Notch signaling[J]. J Cell Physiol, 2017, 232(9): 2569-2580. |
25 | SEMENOVA D, BOGDANOVA M, KOSTINA A, et al. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells[J]. Cell Tissue Res, 2020, 379(1): 169-179. |
26 | ZANOTTI S, CANALIS E. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture[J]. Bone, 2014, 62: 22-28. |
27 | ZANOTTI S, SMERDEL-RAMOYA A, STADMEYER L, et al. Notch inhibits osteoblast differentiation and causes osteopenia[J]. Endocrinology, 2008, 149(8): 3890-3899. |
28 | UGARTE F, RYSER M, THIEME S, et al. Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J]. Exp Hematol, 2009, 37(7): 867-875.e1. |
29 | JI Y T, KE Y X, GAO S. Intermittent activation of Notch signaling promotes bone formation[J]. Am J Transl Res, 2017, 9(6): 2933-2944. |
30 | ZHAO B H, GRIMES S N, LI S S, et al. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J[J]. J Exp Med, 2012, 209(2): 319-334. |
31 | CANALIS E, SCHILLING L, YEE S P, et al. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption[J]. J Biol Chem, 2016, 291(4): 1538-1551. |
32 | GOEL P N, MOHARRER Y, HEBB J H, et al. Suppression of Notch signaling in osteoclasts improves bone regeneration and healing[J]. J Orthop Res, 2019, 37(10): 2089-2103. |
33 | BENEDITO R, ROCA C, SÖRENSEN I, et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis[J]. Cell, 2009, 137(6): 1124-1135. |
34 | SAHARA M, HANSSON E M, WERNET O, et al. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells[J]. Cell Res, 2015, 25(1): 148. |
35 | ZHANG B, PU W T. Notching up vascular regeneration[J]. Cell Res, 2014, 24(7): 777-778. |
36 | KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328. |
37 | RAMASAMY S K, KUSUMBE A P, WANG L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376-380. |
38 | YANG M, LI C J, SUN X, et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity[J]. Nat Commun, 2017, 8: 16003. |
39 | ZANOTTI S, CANALIS E. Notch signaling and the skeleton[J]. Endocr Rev, 2016, 37(3): 223-253. |
40 | XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss[J]. Nat Med, 2018, 24(6): 823-833. |
41 | ZHU Y, RUAN Z, LIN Z Y, et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women[J]. J Bone Miner Metab, 2019, 37(6): 987-995. |
42 | WANG L, ZHOU F, ZHANG P, et al. Human type H vessels are a sensitive biomarker of bone mass[J]. Cell Death Dis, 2017, 8(5): e2760. |
43 | SHAO J, ZHOU Y H, LIN J Y, et al. Notch expressed by osteocytes plays a critical role in mineralisation[J]. J Mol Med, 2018, 96(3): 333-347. |
44 | PFLANZ D, BIRKHOLD A I, ALBIOL L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression[J]. Sci Rep, 2017, 7(1): 9435. |
45 | ZIOUTI F, EBERT R, RUMMLER M, et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells[J]. Stem Cells Int, 2019, 2019: 5150634. |
46 | MANOKAWINCHOKE J, PAVASANT P, OSATHANON T. Intermittent compressive stress regulates Notch target gene expression via transforming growth factor-β signaling in murine pre-osteoblast cell line[J]. Arch Oral Biol, 2017, 82: 47-54. |
47 | NIEDERMAIR T, STRAUB R H, BROCHHAUSEN C, et al. Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice[J]. Int J Mol Sci, 2020, 21(2): 405. |
48 | MIYATA S. Cytoskeletal signal-regulated oligodendrocyte myelination and remyelination[J]. Adv Exp Med Biol, 2019, 1190: 33-42. |
49 | ARTHUR-FARRAJ P, WANEK K, HANTKE J, et al. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate[J]. Glia, 2011, 59(5): 720-733. |
50 | WANG J, REN K Y, WANG Y H, et al. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury[J]. Artif Cells Nanomed Biotechnol, 2015, 43(6): 383-389. |
51 | ZANOTTI S, CANALIS E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes[J]. Bone, 2017, 103: 159-167. |
52 | ZANOTTI S, YU J, ADHIKARI S, et al. Glucocorticoids inhibit Notch target gene expression in osteoblasts[J]. J Cell Biochem, 2018, 119(7): 6016-6023. |
53 | KAMIŃSKA A, MAREK S, PARDYAK L, et al. Crosstalk between androgen-ZIP9 signaling and Notch pathway in rodent Sertoli cells[J]. Int J Mol Sci, 2020, 21(21): 8275. |
[1] | WU Zhenkai, DENG Bo, PAN Yu, DING Feng. Research progress in the role and mechanism of acyloxyacyl hydrolase in diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 101-107. |
[2] | LI Yuehua, LI Qingfeng, XIE Yun. Advances in application of adipose-derived mesenchymal stem cells in autoimmune diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1131-1138. |
[3] | A Tingxi, SHAO Chunyi, FU Yao. Research progress on the role of regulatory T cells in ocular surface diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1145-1150. |
[4] | LIU Hongqiang, LU Yanqing, GAO Yuxuan, WANG Yiyun, WANG Chuandong, ZHANG Xiaoling. Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 846-857. |
[5] | ZHANG Lincheng, ZHONG Hua. Progress in pathogenesis and clinical treatment of sarcoidosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 931-938. |
[6] | LEI Haitao, TIAN Xuemei, JIN Fangquan. Advances in the correlation between cytokine signal transduction inhibitors and rheumatoid arthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 945-951. |
[7] | WANG Xinpeng, WANG Junying, CAI Jiayi, FU Wanbing, ZHONG Hua. Effect of low-dose decitabine on the biological behavior of bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 758-767. |
[8] | ZHANG Huanyu, JIANG Yiting, ZHU Xiaochen, HE Zhiyan, ZHOU Wei, SONG Zhongchen. Effects of gingipain extracts on brain neuroinflammation in mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 570-577. |
[9] | KANG Wenhui, CHEN Yiting, ZHAO Anda, LI Rong, LI Shenghui. Research progress of the mechanism of melatonin in the pathogenesis and course of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 667-672. |
[10] | WU Yue, ZHANG Jiaying, WANG Wei, LI Jin. Classification and research progress of corneal neurotization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 528-534. |
[11] | HAO Lei, JIN Ge, YANG Yongtao, WANG Junwei, SUN Yang, QIN Cuiling, ZHAN Qunling. Effect of miR-124-1 mediated by exosomes of bone marrow-derived mesenchymal stem cells on the regulation of transformation of M2 microglia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 323-330. |
[12] | LIU Ziwei, CAO Wenwen, WANG Yunrui, FENG Xiaoling. Potential role of SIRT1 in unexplained recurrent spontaneous abortion [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1466-1473. |
[13] | JIANG Yi, JIANG Ping, ZHANG Mingming, FANG Jingyuan. Research progress in the role of Akkermansia muciniphila in gut-related diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1490-1497. |
[14] | Yi-feng SHI, Ying-ru HUANG, Yun-xiao LIU, Song ZHANG, Hua XIAN. Effects of heat shock protein 70 on cytoactive of sciatic nerve cryopreservation and nerve regeneration after allograft [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1190-1196. |
[15] | Chi-hsiang CHUANG, Jia-chen DONG, Rong SHU. Biological and angiogenic effects of enamel matrix derivative on periodontal regeneration-related cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1099-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||