
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (2): 230-236.doi: 10.3969/j.issn.1674-8115.2023.02.013
• Review • Previous Articles Next Articles
LIU Tiexin(
), LIN Junqing, ZHENG Xianyou(
)
Received:2022-08-02
Accepted:2022-11-03
Online:2023-02-28
Published:2023-02-28
Contact:
ZHENG Xianyou
E-mail:ltx19821875723@163.com;zhengxianyou@126.com
Supported by:CLC Number:
LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.02.013
| 1 | COURTINE G, SOFRONIEW M V. Spinal cord repair: advances in biology and technology[J]. Nat Med, 2019, 25(6): 898-908. |
| 2 | FEHLINGS M G, TETREAULT L A, WILSON J R, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope[J]. Global Spine J, 2017, 7(3 Suppl): 84S-94S. |
| 3 | 陈星月, 陈栋, 陈春慧, 等. 中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J]. 中国循证医学杂志, 2018, 18(2): 143-150. |
| CHEN X Y, CHEN D, CHEN C H, et al. The epidemiology and disease burden of traumatic spinal cord injury in China: a systematic review[J]. Chinese Journal of Evidence-Based Medicine, 2018, 18(2): 143-150. | |
| 4 | PETROVA V, NIEUWENHUIS B, FAWCETT J W, et al. Axonal organelles as molecular platforms for axon growth and regeneration after injury[J]. Int J Mol Sci, 2021, 22(4): 1798. |
| 5 | BARTOLÁK-SUKI E, IMSIROVIC J, NISHIBORI Y, et al. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors[J]. Int J Mol Sci, 2017, 18(8): 1812. |
| 6 | HAN S M, BAIG H S, HAMMARLUND M. Mitochondria localize to injured axons to support regeneration[J]. Neuron, 2016, 92(6): 1308-1323. |
| 7 | CAVALLUCCI V, BISICCHIA E, CENCIONI M T, et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons[J]. Cell Death Dis, 2014, 5(11): e1545. |
| 8 | MALLA B, NIESNER R, HAUSER A, et al. Imaging and analysis of neuronal mitochondria in murine acute brain slices[J]. J Neurosci Methods, 2022, 372: 109558. |
| 9 | BALLABIO A, BONIFACINO J S. Lysosomes as dynamic regulators of cell and organismal homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 101-118. |
| 10 | STAVOE A K H, HOLZBAUR E L F. Autophagy in neurons[J]. Annu Rev Cell Dev Biol, 2019, 35: 477-500. |
| 11 | SAKAMOTO K, OZAKI T, KO Y C, et al. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis[J]. Nat Chem Biol, 2019, 15(7): 699-709. |
| 12 | WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. |
| 13 | RABANAL-RUIZ Y, KOROLCHUK V I. mTORC1 and nutrient homeostasis: the central role of the lysosome[J]. Int J Mol Sci, 2018, 19(3): 818. |
| 14 | JEHAN C, CARTIER D, BUCHARLES C, et al. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology[J]. Redox Biol, 2022, 55: 102412. |
| 15 | JACQUEMYN J, CASCALHO A, GOODCHILD R E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis[J]. EMBO Rep, 2017, 18(11): 1905-1921. |
| 16 | TOJIMA T, KAMIGUCHI H. Exocytic and endocytic membrane trafficking in axon development[J]. Dev Growth Differ, 2015, 57(4): 291-304. |
| 17 | WOJNACKI J, GALLI T. Membrane traffic during axon development[J]. Dev Neurobiol, 2016, 76(11): 1185-1200. |
| 18 | YAP C C, WINCKLER B. Harnessing the power of the endosome to regulate neural development[J]. Neuron, 2012, 74(3): 440-451. |
| 19 | KORHONEN L, LINDHOLM D. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle[J]. J Cell Biol, 2004, 165(1): 27-30. |
| 20 | LEE M, LIU Y C, CHEN C, et al. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain[J]. J Cell Biol, 2020, 219(2): e201903033. |
| 21 | DI PAOLO A, GARAT J, EASTMAN G, et al. Functional genomics of axons and synapses to understand neurodegenerative diseases[J]. Front Cell Neurosci, 2021, 15: 686722. |
| 22 | NJOMEN E, TEPE J J. Proteasome activation as a new therapeutic approach to target proteotoxic disorders[J]. J Med Chem, 2019, 62(14): 6469-6481. |
| 23 | TAKABATAKE M, GOSHIMA Y, SASAKI Y. Semaphorin-3A promotes degradation of fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway[J]. Front Neural Circuits, 2020, 14: 5. |
| 24 | JIN E J, KO H R, HWANG I, et al. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation[J]. Sci Rep, 2018, 8(1): 2557. |
| 25 | HE L H, LEMASTERS J J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?[J]. FEBS Lett, 2002, 512(1/2/3): 1-7. |
| 26 | MCEWEN M L, SULLIVAN P G, SPRINGER J E. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats[J]. J Neurotrauma, 2007, 24(4): 613-624. |
| 27 | PATEL S P, SULLIVAN P G, LYTTLE T S, et al. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery[J]. Neuroscience, 2012, 210: 296-307. |
| 28 | PATEL S P, SULLIVAN P G, PANDYA J D, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma[J]. Exp Neurol, 2014, 257: 95-105. |
| 29 | PATEL S P, COX D H, GOLLIHUE J L, et al. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery[J]. Exp Neurol, 2017, 293: 74-82. |
| 30 | WANG Q Q, CAI H X, HU Z X, et al. Loureirin B promotes axon regeneration by inhibiting endoplasmic reticulum stress: induced mitochondrial dysfunction and regulating the Akt/GSK-3β pathway after spinal cord injury[J]. J Neurotrauma, 2019, 36(12): 1949-1964. |
| 31 | SCHOLPA N E, WILLIAMS H, WANG W X, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury[J]. J Neurotrauma, 2019, 36(6): 962-972. |
| 32 | GOLLIHUE J L, PATEL S P, RABCHEVSKY A G. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma[J]. Neural Regen Res, 2018, 13(2): 194-197. |
| 33 | GOLLIHUE J L, PATEL S P, ELDAHAN K C, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury[J]. J Neurotrauma, 2018, 35(15): 1800-1818. |
| 34 | KANNO H, OZAWA H, SEKIGUCHI A, et al. The role of mTOR signaling pathway in spinal cord injury[J]. Cell Cycle, 2012, 11(17): 3175-3179. |
| 35 | ZHANG D, XUAN J, ZHENG B B, et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation[J]. Mol Neurobiol, 2017, 54(5): 3327-3341. |
| 36 | WU Y Q, XIONG J, HE Z L, et al. Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury[J]. Acta Pharmacol Sin, 2022, 43(6): 1360-1371. |
| 37 | HETZ C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(2): 89-102. |
| 38 | BISICCHIA E, MASTRANTONIO R, NOBILI A, et al. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload[J]. Cell Death Dis, 2022, 13(4): 381. |
| 39 | ZHOU Z J, HU B W, LYU Q N, et al. MiR-384-5p promotes spinal cord injury recovery in rats through suppressing of autophagy and endoplasmic reticulum stress[J]. Neurosci Lett, 2020, 727: 134937. |
| 40 | HE M, DING Y T, CHU C, et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci USA, 2016, 113(40): 11324-11329. |
| 41 | WANG S, WU J, ZENG Y Z, et al. Necrostatin-1 mitigates endoplasmic reticulum stress after spinal cord injury[J]. Neurochem Res, 2017, 42(12): 3548-3558. |
| 42 | LI Y, ZHANG J, ZHOU K L, et al. Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury[J]. Cell Biol Toxicol, 2021, 37(3): 401-419. |
| 43 | FU H T, HU D, CHEN J L, et al. Repair of the injured spinal cord by schwann cell transplantation[J]. Front Neurosci, 2022, 16: 800513. |
| 44 | ZHAO Y Z, JIANG X, XIAO J, et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury[J]. Acta Biomater, 2016, 29: 71-80. |
| 45 | LI H T, ZHANG X R, QI X, et al. Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway[J]. Int J Biol Sci, 2019, 15(2): 277-286. |
| 46 | LIU X H, YANG J, LI Z, et al. Hyperbaric oxygen treatment protects against spinal cord injury by inhibiting endoplasmic reticulum stress in rats[J]. Spine, 2015, 40(24): E1276-E1283. |
| 47 | WU Q, ZHANG Y J, GAO J Y, et al. Aquaporin-4 mitigates retrograde degeneration of rubrospinal neurons by facilitating edema clearance and glial scar formation after spinal cord injury in mice[J]. Mol Neurobiol, 2014, 49(3): 1327-1337. |
| 48 | ZHENG B B, ZHOU Y L, ZHANG H Y, et al. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury[J]. Int J Biol Sci, 2017, 13(12): 1520-1531. |
| 49 | WANG H L, WU Y Q, HAN W, et al. Hydrogen sulfide ameliorates blood-spinal cord barrier disruption and improves functional recovery by inhibiting endoplasmic reticulum stress-dependent autophagy[J]. Front Pharmacol, 2018, 9: 858. |
| 50 | KOBAYASHI H, ETOH K, FUKUDA M. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth[J]. Small GTPases, 2014, 5(3): e983874. |
| 51 | WU C S, CUI Z M, LIU Y H, et al. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury[J]. Int J Dev Neurosci, 2016, 52: 24-32. |
| 52 | GALLON M, CLAIRFEUILLE T, STEINBERG F, et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer[J]. Proc Natl Acad Sci USA, 2014, 111(35): E3604-E3613. |
| 53 | ZENG Y Z, WANG N W, GUO T T, et al. Snx27 deletion promotes recovery from spinal cord injury by neuroprotection and reduces macrophage/microglia proliferation[J]. Front Neurol, 2018, 9: 1059. |
| 54 | SPITZBARTH I, MOORE S A, STEIN V M, et al. Current insights into the pathology of canine intervertebral disc extrusion-induced spinal cord injury[J]. Front Vet Sci, 2020, 7: 595796. |
| 55 | MYEKU N, WANG H, FIGUEIREDO-PEREIRA M E. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons[J]. Neurosci Lett, 2012, 527(2): 126-131. |
| 56 | MORIWAKI K, CHAN F K M. RIP3: a molecular switch for necrosis and inflammation[J]. Genes Dev, 2013, 27(15): 1640-1649. |
| 57 | WU C S, CHEN J J, LIU Y H, et al. Upregulation of PSMB4 is associated with the necroptosis after spinal cord injury[J]. Neurochem Res, 2016, 41(11): 3103-3112. |
| 58 | TICA J R, BRADBURY E J, DIDANGELOS A. Combined transcriptomics, proteomics and bioinformatics identify drug targets in spinal cord injury[J]. Int J Mol Sci, 2018, 19(5): 1461. |
| [1] | HAN Longchuan, LI Yue, ZOU Zhihui, LUO Jing, LI Ruoyi, ZHANG Yingting, TANG Xinxin, TIAN Lihong, LU Yuheng, HUANG Ying, HE Ming, FU Yinkun. Phosphatidylethanolamine promotes macrophage senescence and liver injury by activating endoplasmic reticulum stress [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 693-704. |
| [2] | YANG Le, ZHOU Yi, WANG Keyun, LAI Yali. Research on the improvement of cognitive impairment, endoplasmic reticulum stress and neuroinflammation in Alzheimer's disease by emodin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 727-734. |
| [3] | YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638. |
| [4] | LUO Wen, LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong. Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 233-240. |
| [5] | TANG Junqian, LI Benshang. Advances in the treatment of pediatric B-cell acute lymphoblastic leukemia with high-risk cytogenetics [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1390-1399. |
| [6] | ZHANG Yong, LI Weihong, CHENG Zhipeng, WANG bin, WANG Siheng, WANG Yubin. Research status of receptor-interacting protein kinase 1 in regulating cancer progression and immune response [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 788-794. |
| [7] | XU Wenhui, YANG Chang, LI Ruiqing, BIAN Jing, LI Xiayi, ZHENG Leizhen. Exploratory study of interferon regulatory factor 3 promoting proliferation and invasion related to colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 301-311. |
| [8] | DING Yanling, LI Jie, YUAN Jun, LI Yan. Research progress in targeted therapies of chronic lymphocytic leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 264-270. |
| [9] | TANG Sijie, MI Jianqing. Clinical advances in antibody-drug conjugates for hematological malignancies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1607-1614. |
| [10] | FANG Xinyue, SHI Lan, XIA Siyi, WANG Jiaxuan, WU Yingli, HE Kejun. Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1287-1298. |
| [11] | JIA Junjie, XING Haifan, ZHANG Qunzi, LIU Qiye, WANG Niansong, FAN Ying. Renal protective effect and mechanism research of hypoxia inducible factor-1α inhibitor YC-1 in diabetic nephropathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1089-1098. |
| [12] | ZHOU Wanzhen, TENG Yincheng. Research progress of the role of non-canonical Wnt signaling pathway in ovarian cancer and its potential therapeutic implications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1056-1063. |
| [13] | DONG Haiping, XIE Haiyi, MA Xiaoxiao, WANG Zhenhong. Mechanism of blood-brain barrier damage caused by the inhibition of Wnt7/β-catenin pathway induced by endoplasmic reticulum stress in cerebrovascular endothelial cells after stroke [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 829-838. |
| [14] | MEI Yanqing, HAN Yujie, WENG Wenyun, ZHANG Lei, TANG Yujie. In vitro therapeutic effects and molecular mechanisms of targeted inhibition of CDK12/13 in high-grade gliomas [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 545-559. |
| [15] | XU Yinglian, TIAN Jing, ZHANG Xiang, ZHAO Shunying. Research progress in the roles of airway epithelial cells in the pathogenesis of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 619-623. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||