Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (2): 230-236.doi: 10.3969/j.issn.1674-8115.2023.02.013
• Review • Previous Articles
LIU Tiexin(), LIN Junqing, ZHENG Xianyou()
Received:
2022-08-02
Accepted:
2022-11-03
Online:
2023-02-28
Published:
2023-02-28
Contact:
ZHENG Xianyou
E-mail:ltx19821875723@163.com;zhengxianyou@126.com
Supported by:
CLC Number:
LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236.
1 | COURTINE G, SOFRONIEW M V. Spinal cord repair: advances in biology and technology[J]. Nat Med, 2019, 25(6): 898-908. |
2 | FEHLINGS M G, TETREAULT L A, WILSON J R, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope[J]. Global Spine J, 2017, 7(3 Suppl): 84S-94S. |
3 | 陈星月, 陈栋, 陈春慧, 等. 中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J]. 中国循证医学杂志, 2018, 18(2): 143-150. |
CHEN X Y, CHEN D, CHEN C H, et al. The epidemiology and disease burden of traumatic spinal cord injury in China: a systematic review[J]. Chinese Journal of Evidence-Based Medicine, 2018, 18(2): 143-150. | |
4 | PETROVA V, NIEUWENHUIS B, FAWCETT J W, et al. Axonal organelles as molecular platforms for axon growth and regeneration after injury[J]. Int J Mol Sci, 2021, 22(4): 1798. |
5 | BARTOLÁK-SUKI E, IMSIROVIC J, NISHIBORI Y, et al. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors[J]. Int J Mol Sci, 2017, 18(8): 1812. |
6 | HAN S M, BAIG H S, HAMMARLUND M. Mitochondria localize to injured axons to support regeneration[J]. Neuron, 2016, 92(6): 1308-1323. |
7 | CAVALLUCCI V, BISICCHIA E, CENCIONI M T, et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons[J]. Cell Death Dis, 2014, 5(11): e1545. |
8 | MALLA B, NIESNER R, HAUSER A, et al. Imaging and analysis of neuronal mitochondria in murine acute brain slices[J]. J Neurosci Methods, 2022, 372: 109558. |
9 | BALLABIO A, BONIFACINO J S. Lysosomes as dynamic regulators of cell and organismal homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 101-118. |
10 | STAVOE A K H, HOLZBAUR E L F. Autophagy in neurons[J]. Annu Rev Cell Dev Biol, 2019, 35: 477-500. |
11 | SAKAMOTO K, OZAKI T, KO Y C, et al. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis[J]. Nat Chem Biol, 2019, 15(7): 699-709. |
12 | WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. |
13 | RABANAL-RUIZ Y, KOROLCHUK V I. mTORC1 and nutrient homeostasis: the central role of the lysosome[J]. Int J Mol Sci, 2018, 19(3): 818. |
14 | JEHAN C, CARTIER D, BUCHARLES C, et al. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology[J]. Redox Biol, 2022, 55: 102412. |
15 | JACQUEMYN J, CASCALHO A, GOODCHILD R E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis[J]. EMBO Rep, 2017, 18(11): 1905-1921. |
16 | TOJIMA T, KAMIGUCHI H. Exocytic and endocytic membrane trafficking in axon development[J]. Dev Growth Differ, 2015, 57(4): 291-304. |
17 | WOJNACKI J, GALLI T. Membrane traffic during axon development[J]. Dev Neurobiol, 2016, 76(11): 1185-1200. |
18 | YAP C C, WINCKLER B. Harnessing the power of the endosome to regulate neural development[J]. Neuron, 2012, 74(3): 440-451. |
19 | KORHONEN L, LINDHOLM D. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle[J]. J Cell Biol, 2004, 165(1): 27-30. |
20 | LEE M, LIU Y C, CHEN C, et al. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain[J]. J Cell Biol, 2020, 219(2): e201903033. |
21 | DI PAOLO A, GARAT J, EASTMAN G, et al. Functional genomics of axons and synapses to understand neurodegenerative diseases[J]. Front Cell Neurosci, 2021, 15: 686722. |
22 | NJOMEN E, TEPE J J. Proteasome activation as a new therapeutic approach to target proteotoxic disorders[J]. J Med Chem, 2019, 62(14): 6469-6481. |
23 | TAKABATAKE M, GOSHIMA Y, SASAKI Y. Semaphorin-3A promotes degradation of fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway[J]. Front Neural Circuits, 2020, 14: 5. |
24 | JIN E J, KO H R, HWANG I, et al. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation[J]. Sci Rep, 2018, 8(1): 2557. |
25 | HE L H, LEMASTERS J J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?[J]. FEBS Lett, 2002, 512(1/2/3): 1-7. |
26 | MCEWEN M L, SULLIVAN P G, SPRINGER J E. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats[J]. J Neurotrauma, 2007, 24(4): 613-624. |
27 | PATEL S P, SULLIVAN P G, LYTTLE T S, et al. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery[J]. Neuroscience, 2012, 210: 296-307. |
28 | PATEL S P, SULLIVAN P G, PANDYA J D, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma[J]. Exp Neurol, 2014, 257: 95-105. |
29 | PATEL S P, COX D H, GOLLIHUE J L, et al. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery[J]. Exp Neurol, 2017, 293: 74-82. |
30 | WANG Q Q, CAI H X, HU Z X, et al. Loureirin B promotes axon regeneration by inhibiting endoplasmic reticulum stress: induced mitochondrial dysfunction and regulating the Akt/GSK-3β pathway after spinal cord injury[J]. J Neurotrauma, 2019, 36(12): 1949-1964. |
31 | SCHOLPA N E, WILLIAMS H, WANG W X, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury[J]. J Neurotrauma, 2019, 36(6): 962-972. |
32 | GOLLIHUE J L, PATEL S P, RABCHEVSKY A G. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma[J]. Neural Regen Res, 2018, 13(2): 194-197. |
33 | GOLLIHUE J L, PATEL S P, ELDAHAN K C, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury[J]. J Neurotrauma, 2018, 35(15): 1800-1818. |
34 | KANNO H, OZAWA H, SEKIGUCHI A, et al. The role of mTOR signaling pathway in spinal cord injury[J]. Cell Cycle, 2012, 11(17): 3175-3179. |
35 | ZHANG D, XUAN J, ZHENG B B, et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation[J]. Mol Neurobiol, 2017, 54(5): 3327-3341. |
36 | WU Y Q, XIONG J, HE Z L, et al. Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury[J]. Acta Pharmacol Sin, 2022, 43(6): 1360-1371. |
37 | HETZ C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(2): 89-102. |
38 | BISICCHIA E, MASTRANTONIO R, NOBILI A, et al. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload[J]. Cell Death Dis, 2022, 13(4): 381. |
39 | ZHOU Z J, HU B W, LYU Q N, et al. MiR-384-5p promotes spinal cord injury recovery in rats through suppressing of autophagy and endoplasmic reticulum stress[J]. Neurosci Lett, 2020, 727: 134937. |
40 | HE M, DING Y T, CHU C, et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci USA, 2016, 113(40): 11324-11329. |
41 | WANG S, WU J, ZENG Y Z, et al. Necrostatin-1 mitigates endoplasmic reticulum stress after spinal cord injury[J]. Neurochem Res, 2017, 42(12): 3548-3558. |
42 | LI Y, ZHANG J, ZHOU K L, et al. Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury[J]. Cell Biol Toxicol, 2021, 37(3): 401-419. |
43 | FU H T, HU D, CHEN J L, et al. Repair of the injured spinal cord by schwann cell transplantation[J]. Front Neurosci, 2022, 16: 800513. |
44 | ZHAO Y Z, JIANG X, XIAO J, et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury[J]. Acta Biomater, 2016, 29: 71-80. |
45 | LI H T, ZHANG X R, QI X, et al. Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway[J]. Int J Biol Sci, 2019, 15(2): 277-286. |
46 | LIU X H, YANG J, LI Z, et al. Hyperbaric oxygen treatment protects against spinal cord injury by inhibiting endoplasmic reticulum stress in rats[J]. Spine, 2015, 40(24): E1276-E1283. |
47 | WU Q, ZHANG Y J, GAO J Y, et al. Aquaporin-4 mitigates retrograde degeneration of rubrospinal neurons by facilitating edema clearance and glial scar formation after spinal cord injury in mice[J]. Mol Neurobiol, 2014, 49(3): 1327-1337. |
48 | ZHENG B B, ZHOU Y L, ZHANG H Y, et al. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury[J]. Int J Biol Sci, 2017, 13(12): 1520-1531. |
49 | WANG H L, WU Y Q, HAN W, et al. Hydrogen sulfide ameliorates blood-spinal cord barrier disruption and improves functional recovery by inhibiting endoplasmic reticulum stress-dependent autophagy[J]. Front Pharmacol, 2018, 9: 858. |
50 | KOBAYASHI H, ETOH K, FUKUDA M. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth[J]. Small GTPases, 2014, 5(3): e983874. |
51 | WU C S, CUI Z M, LIU Y H, et al. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury[J]. Int J Dev Neurosci, 2016, 52: 24-32. |
52 | GALLON M, CLAIRFEUILLE T, STEINBERG F, et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer[J]. Proc Natl Acad Sci USA, 2014, 111(35): E3604-E3613. |
53 | ZENG Y Z, WANG N W, GUO T T, et al. Snx27 deletion promotes recovery from spinal cord injury by neuroprotection and reduces macrophage/microglia proliferation[J]. Front Neurol, 2018, 9: 1059. |
54 | SPITZBARTH I, MOORE S A, STEIN V M, et al. Current insights into the pathology of canine intervertebral disc extrusion-induced spinal cord injury[J]. Front Vet Sci, 2020, 7: 595796. |
55 | MYEKU N, WANG H, FIGUEIREDO-PEREIRA M E. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons[J]. Neurosci Lett, 2012, 527(2): 126-131. |
56 | MORIWAKI K, CHAN F K M. RIP3: a molecular switch for necrosis and inflammation[J]. Genes Dev, 2013, 27(15): 1640-1649. |
57 | WU C S, CHEN J J, LIU Y H, et al. Upregulation of PSMB4 is associated with the necroptosis after spinal cord injury[J]. Neurochem Res, 2016, 41(11): 3103-3112. |
58 | TICA J R, BRADBURY E J, DIDANGELOS A. Combined transcriptomics, proteomics and bioinformatics identify drug targets in spinal cord injury[J]. Int J Mol Sci, 2018, 19(5): 1461. |
[1] | HAN Yongqi, HAN Da, XIA Qian, JI Dingkun, TAN Weihong. Aptamer-drug conjugates (ApDCs): new trend for cancer precision therapy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1176-1181. |
[2] | Jiyu HAN, Yanhong WANG, Daqian WAN. Research progress and development trend of lower extremity exoskeleton rehabilitation robot [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 241-246. |
[3] | LI Ruonan, CHEN Xiaoke, XU Yuanyuan, TAN Qiang. Advances in postoperative adjuvant targeted therapy for patients with stage ⅠB-ⅢA non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1612-1619. |
[4] | Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677. |
[5] | LI Chao, MI Jian-qing, WANG Jin. Advances in Philadelphia chromosome-like acute lymphoblastic leukemia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1294-1301. |
[6] | WEI Xiao-mei1, HU San-lian2, QIAN Hui-juan2, WEI Wei-ping1, WANG Fei-yan1. Study on the clinical application of the intervention program of bowel dysfunction in patients with spinal cord injury [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(6): 828-834. |
[7] | LIN Jun-qing, ZHENG Xian-you, BAO Bing-bo, LI Xing-wei, GAO Tao, HUANG Teng-li. Research progress of the mechanism and treatment of macrophage in spinal cord injury repair [J]. , 2020, 40(1): 118-. |
[8] | GAO Tao, ZHU Xiao-zhong, BAO Bing-bo, LI Xing-wei, LIN Jun-qing, HUANG Teng-li, CHAI Yi-min, ZHANG Chang-qing, ZHENG Xian-you. Structural changes of rectal smooth muscle after spinal cord injury in rats [J]. , 2019, 39(9): 963-. |
[9] | RUAN Xin1, ZHANG Ying-ting1, HAN Ke-qi1, LIN Long-shuai2, CHEN Chen1, YUE Ming1, WANG Chu-qiao1, SUN Ying-gang3, ZHAO Qing-hua2, HE Ming1. SIRT7 protecting hepatocytes LPS or D-GalN/LPS-induced apoptosisattenuating endoplasmic reticulum stress via inactivation of GRP78 [J]. , 2019, 39(8): 812-. |
[10] | LI Qi1, ZHOU Xiang-dong1, ZENG Man1, Victor P. KOLOSOV2, Juliy M. PERELMAN2. Role of inositol-requiring kinase 1α/X-box binding protein 1 in airway mucus secretion inducedneutrophil elastase [J]. , 2019, 39(1): 21-. |
[11] | GAO Tao, ZHU Xiao-zhong, BAO Bing-bo, LI Xing-wei, ZHENG Xian-you. Research progress of neurogenic bowel dysfunction in spinal cord injury [J]. , 2018, 38(9): 1116-. |
[12] | JIAN Chao-hui, BAO Yu-qian. Research progress of autophagy in non-alcoholic fatty liver disease [J]. , 2018, 38(6): 690-. |
[13] | LIU Yang, GAO Yu-ting, MIAO Yu-chuan. Effect of Danshen injection on expression of brain-derived neurotrophic factor and insulin-like growth factor-1 in rats with spinal cord injury [J]. , 2018, 38(3): 272-. |
[14] | ZHU Xiao-zhong, ZHU Hong-yi, BAO Bing-bo, LI Xing-wei, GAO Tao, ZHENG Xian-you . Effectiveness of defecation reconstruction following nerve transfer in rats by PRV retrograde tracing [J]. , 2017, 37(9): 1196-. |
[15] | TANG Wei, XIA Yong-zhi, LIU Jing-xian, LIU Lu, YAN Yi . Effects of sodium houttuyfonate on spinal cord injured neurons in rats [J]. , 2017, 37(12): 1594-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 503
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||