Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (11): 1439-1446.doi: 10.3969/j.issn.1674-8115.2024.11.011
• Review • Previous Articles
LIU Yonghui1(), TANG Li1, LIANG Taigang1, ZHANG Jian2(), FENG Li2()
Received:
2024-06-05
Accepted:
2024-06-11
Online:
2024-11-28
Published:
2024-11-28
Contact:
ZHANG Jian,FENG Li
E-mail:QLiuYongHui@163.com;jian.zhang@sjtu.edu.cn;jian.zhang@sjtu.deu.cn;fengli2020@sjtu.edu.cn
Supported by:
CLC Number:
LIU Yonghui, TANG Li, LIANG Taigang, ZHANG Jian, FENG Li. Research progress in the role of SIRT6 in aging and metabolism[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1439-1446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.11.011
1 | WU Q J, ZHANG T N, CHEN H H, et al. The sirtuin family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 402. |
2 | SHARMA A, MAHUR P, MUTHUKUMARAN J, et al. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review[J]. 3 Biotech, 2023, 13(1): 29. |
3 | DZIDEK A, CZERWIŃSKA-LEDWIG O, ŻYCHOWSKA M, et al. The role of increased expression of sirtuin 6 in the prevention of premature aging pathomechanisms[J]. Int J Mol Sci, 2023, 24(11): 9655. |
4 | KLEIN M A, DENU J M. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators[J]. J Biol Chem, 2020, 295(32): 11021-11041. |
5 | HOU T Y, TIAN Y, CAO Z Y, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation[J]. Mol Cell, 2022, 82(21): 4099-4115.e9. |
6 | PAN P W, FELDMAN J L, DEVRIES M K, et al. Structure and biochemical functions of SIRT6[J]. J Biol Chem, 2011, 286(16): 14575-14587. |
7 | YOU Y Z, LIANG W. SIRT1 and SIRT6: the role in aging-related diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166815. |
8 | MAHLKNECHT U, HO A D, VOELTER-MAHLKNECHT S. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene[J]. Int J Oncol, 2006, 28(2): 447-456. |
9 | TENNEN R I, BERBER E, CHUA K F. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization[J]. Mech Ageing Dev, 2010, 131(3): 185-192. |
10 | SMIRNOVA E, BIGNON E, SCHULTZ P, et al. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation[J]. Elife, 2024, 12: RP87989. |
11 | WANG Z A, MARKERT J W, WHEDON S D, et al. Structural basis of sirtuin 6-catalyzed nucleosome deacetylation[J]. J Am Chem Soc, 2023, 145(12): 6811-6822. |
12 | KALOUS K S, WYNIA-SMITH S L, OLP M D, et al. Mechanism of Sirt1 NAD+-dependent protein deacetylase inhibition by cysteine S-nitrosation[J]. J Biol Chem, 2016, 291(49): 25398-25410. |
13 | SACCONNAY L, CARRUPT P A, NURISSO A. Human sirtuins: structures and flexibility[J]. J Struct Biol, 2016, 196(3): 534-542. |
14 | MIN J, LANDRY J, STERNGLANZ R, et al. Crystal structure of a SIR2 homolog-NAD complex[J]. Cell, 2001, 105(2): 269-279. |
15 | RONNEBAUM S M, WU Y X, MCDONOUGH H, et al. The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination[J]. Mol Cell Biol, 2013, 33(22): 4461-4472. |
16 | JIN L, WEI W T, JIANG Y B, et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes[J]. J Biol Chem, 2009, 284(36): 24394-24405. |
17 | BARAN M, MIZIAK P, STEPULAK A, et al. The role of sirtuin 6 in the deacetylation of histone proteins as a factor in the progression of neoplastic disease[J]. Int J Mol Sci, 2023, 25(1): 497. |
18 | QIU B Q, LI S, LI M T, et al. KAT8 acetylation-controlled lipolysis affects the invasive and migratory potential of colorectal cancer cells[J]. Cell Death Dis, 2023, 14(2): 164. |
19 | MOSTOSLAVSKY R, CHUA K F, LOMBARD D B, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-329. |
20 | LU Z Z, CHEN H J, WANG W Q, et al. Synthesized soliton crystals[J]. Nat Commun, 2021, 12(1): 3179. |
21 | TIAN X, FIRSANOV D, ZHANG Z H, et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species[J]. Cell, 2019, 177(3): 622-638.e22. |
22 | MAO Z Y, HINE C, TIAN X, et al. SIRT6 promotes DNA repair under stress by activating PARP1[J]. Science, 2011, 332(6036): 1443-1446. |
23 | MICHISHITA E, MCCORD R A, BOXER L D, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6[J]. Cell Cycle, 2009, 8(16): 2664-2666. |
24 | XIAO C Y, KIM H S, LAHUSEN T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice[J]. J Biol Chem, 2010, 285(47): 36776-36784. |
25 | ROICHMAN A, ELHANATI S, AON M A, et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan[J]. Nat Commun, 2021, 12(1): 3208. |
26 | DONG X C. Sirtuin 6: a key regulator of hepatic lipid metabolism and liver health[J]. Cells, 2023, 12(4): 663. |
27 | ZHANG W Q, WAN H F, FENG G H, et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys[J]. Nature, 2018, 560(7720): 661-665. |
28 | SIMON M, YANG J P, GIGAS J, et al. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A[J]. EMBO J, 2022, 41(21): e110393. |
29 | FERRER C M, ALDERS M, POSTMA A V, et al. An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality[J]. Genes Dev, 2018, 32(5/6): 373-388. |
30 | KIM H S, XIAO C Y, WANG R H, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis[J]. Cell Metab, 2010, 12(3): 224-236. |
31 | NAIMAN S, HUYNH F K, GIL R, et al. SIRT6 promotes hepatic β-oxidation via activation of PPARα[J]. Cell Rep, 2019, 29(12): 4127-4143.e8. |
32 | TAO R Y, XIONG X W, DEPINHO R A, et al. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression[J]. J Biol Chem, 2013, 288(41): 29252-29259. |
33 | ELHANATI S, KANFI Y, VARVAK A, et al. Multiple regulatory layers of SREBP1/2 by SIRT6[J]. Cell Rep, 2013, 4(5): 905-912. |
34 | ZHONG L, D′URSO A, TOIBER D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha[J]. Cell, 2010, 140(2): 280-293. |
35 | DOMINY J E Jr, LEE Y, JEDRYCHOWSKI M P, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis[J]. Mol Cell, 2012, 48(6): 900-913. |
36 | BIAN C, ZHANG R J, WANG Y X, et al. Sirtuin 6 affects glucose reabsorption and gluconeogenesis in type 1 diabetes via FoxO1[J]. Mol Cell Endocrinol, 2022, 547: 111597. |
37 | GUO Z Y, LI P, GE J B, et al. SIRT6 in aging, metabolism, inflammation and cardiovascular diseases[J]. Aging Dis, 2022, 13(6): 1787-1822. |
38 | GROOTAERT M O J, BENNETT M R. Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets[J]. Nat Rev Cardiol, 2022, 19(10): 668-683. |
39 | ROE K. An inflammation classification system using cytokine parameters[J]. Scand J Immunol, 2021, 93(2): e12970. |
40 | SUN H L, WU Y R, FU D J, et al. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway[J]. Stem Cells, 2014, 32(7): 1943-1955. |
41 | CASPER E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: can it be regulated by SIRT6?[J]. Life Sci, 2023, 330: 122007. |
42 | XU S W, YIN M M, KOROLEVA M, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice[J]. Aging, 2016, 8(5): 1064-1082. |
43 | LEE Y, KA S O, CHA H N, et al. Myeloid sirtuin 6 deficiency causes insulin resistance in high-fat diet-fed mice by eliciting macrophage polarization toward an M1 phenotype[J]. Diabetes, 2017, 66(10): 2659-2668. |
44 | DING Y N, WANG T T, LV S J, et al. SIRT6 is an epigenetic repressor of thoracic aortic aneurysms via inhibiting inflammation and senescence[J]. Signal Transduct Target Ther, 2023, 8(1): 255. |
45 | TATONE C, EMIDIO G D, BARBONETTI A, et al. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility[J]. Hum Reprod Update, 2018, 24(3): 267-289. |
46 | HAN L S, GE J, ZHANG L, et al. Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte[J]. Sci Rep, 2015, 5: 15366. |
47 | LIU W J, ZHANG X M, WANG N, et al. Calorie restriction inhibits ovarian follicle development and follicle loss through activating SIRT1 signaling in mice[J]. Eur J Med Res, 2015, 20(1): 22. |
48 | LI L Y, HUA R, HU K Q, et al. SIRT6 deficiency causes ovarian hypoplasia by affecting Plod1-related collagen formation[J]. Aging Cell, 2024, 23(2): e14031. |
49 | BARTOSCH C, MONTEIRO-REIS S, ALMEIDA-RIOS D, et al. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium[J]. Oncotarget, 2016, 7(2): 1144-1154. |
50 | DROBINTSEVA A O, MEDVEDEV D S, MAKARENKO S V, et al. Implication of sirtuins and kisspeptin in ovarian aging[J]. Usp Gerontol, 2021, 34(1): 18-23. |
51 | MICHISHITA E, PARK J Y, BURNESKIS J M, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J]. Mol Biol Cell, 2005, 16(10): 4623-4635. |
52 | PASCOAL G F L, GERALDI M V, MARÓSTICA M R Jr, et al. Effect of paternal diet on spermatogenesis and offspring health: focus on epigenetics and interventions with food bioactive compounds[J]. Nutrients, 2022, 14(10): 2150. |
53 | WU Y F, YING J H, ZHU X Y, et al. Pachymic acid suppresses the inflammatory response of chondrocytes and alleviates the progression of osteoarthritis via regulating the Sirtuin 6/NF-κB signal axis[J]. Int Immunopharmacol, 2023, 124(Pt A): 110854. |
54 | LEE A, GU H, GWON M H, et al. Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells[J]. Nutr Res Pract, 2021, 15(5): 591-603. |
55 | PAN Z S, GUO J Y, TANG K J, et al. Ginsenoside Rc modulates SIRT6-NRF2 interaction to alleviate alcoholic liver disease[J]. J Agric Food Chem, 2022, 70(44): 14220-14234. |
56 | WU R Y, JIAN T, DING X Q, et al. Total sesquiterpene glycosides from loquat leaves ameliorate HFD-induced insulin resistance by modulating IRS-1/GLUT4, TRPV1, and SIRT6/Nrf2 signaling pathways[J]. Oxid Med Cell Longev, 2021, 2021: 4706410. |
57 | LOMBARDO G E, RUSSO C, MAUGERI A, et al. Sirtuins as players in the signal transduction of Citrus flavonoids[J]. Int J Mol Sci, 2024, 25(4): 1956. |
58 | IACHETTINI S, TRISCIUOGLIO D, ROTILI D, et al. Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells[J]. Cell Death Dis, 2018, 9(10): 996. |
59 | JIAO F Z, ZHANG Z W, HU H T, et al. SIRT6 activator UBCS039 inhibits thioacetamide-induced hepatic injury in vitro and in vivo[J]. Front Pharmacol, 2022, 13: 837544. |
60 | HUANG Z M, ZHAO J X, DENG W, et al. Identification of a cellularly active SIRT6 allosteric activator[J]. Nat Chem Biol, 2018, 14(12): 1118-1126. |
61 | HUANG Z M, ZHAO J X, DENG W, et al. Reply to: binding site for MDL-801 on SIRT6[J]. Nat Chem Biol, 2021, 17(5): 522-523. |
62 | YOU W J, STEEGBORN C. Binding site for activator MDL-801 on SIRT6[J]. Nat Chem Biol, 2021, 17(5): 519-521. |
63 | WU X, LIU H, BROOKS A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11): 926-943. |
64 | ZHANG J H, LI Y P, LIU Q H, et al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells[J]. Hepatology, 2021, 73(3): 1140-1157. |
65 | CHEN Y, CHEN J Y, SUN X X, et al. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells[J]. Aging Cell, 2020, 19(8): e13185. |
[1] | CHEN Huaihuang, ZUO Wu, BIAN Qian. CTCF regulates lipid metabolism and gene expression in mouse AML12 liver cell line [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1069-1082. |
[2] | LI Chenxi, WANG Zirui, JIN Tianhao, ZHOU Zengtong, TANG Guoyao, SHI Linjun. Correlation between computer-assisted quantitative autofluorescence imaging results and the pathological grading of oral epithelial dysplasia in oral leukoplakia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1146-1154. |
[3] | LUO Rui, YANG Gongxin, SHI Huimin, HAN Yongshun, HE Yining, TIAN Zhen, WU Yingwei. Study of imaging characteristics of Kimura disease in the head and neck [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1182-1189. |
[4] | WU Wangshu, WANG Minzhou, SONG Ahui, ZHAO Bingru, LU Jiayue, HONG Wenkai, GU Leyi, XIE Kewei, LU Renhua. Efficacy and safety of compound amino acid capsules in the treatment of malnutrition and calcium and phosphorus metabolism disorders in maintenance hemodialysis patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 1023-1029. |
[5] | CHEN Minghao, LIU Peiyu, WANG Xuan, WU Yixiang, JIANG Yujin, ZHANG Chaoyang, ZHANG Jingfa. Advances in drug therapy of diabetic retinopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 822-829. |
[6] | ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787. |
[7] | HAO Mingxiu, CHEN Hongwei, WANG Junlin, TANG Yinhan, WU Yunyun, JIN Yuhua, HU Yaomin. Investigation and epidemiological analysis of chronic diseases and comorbidities in hospitalized patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 462-468. |
[8] | ZHENG Mengyi, MAO Jialiang, ZOU Zhiguo, ZHANG Ruilei, ZHANG Hou, LI Shiguang. Predictive value of systemic immune inflammation index and somatic symptom scale-China in the occurrence of in-hospital major adverse cardiovascular events after first-episode of acute myocardial infarction undergoing PCI [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 334-341. |
[9] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
[10] | WANG Renjie, HUA Hui, ZHU ChaoYu, WEI Li. Advances of GADD45b in hepatic glucose and lipid metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1316-1322. |
[11] | LI Yu, JIANG Yifan, TONG Rongliang, CHEN Diyu, WU Jian. Research progress in the relationship between FOXM1 and neoplasm metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1323-1329. |
[12] | JIANG Quanxin, CHEN Suzhen, LIU Junli. Research progress in ceruloplasmin regulation of lipid metabolism homeostasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 124-130. |
[13] | LU Xiaobing, YUE Jiang, HE Shengyun, DONG Ying, LU Qing, MA Jing. Effect of intramuscular adipose tissue in the skeletal muscle of thigh on glucose metabolism in male patients with obesity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1169-1174. |
[14] | WU Lingheng, CHEN Jianxiong, ZHANG Mengjiao, SHA Lei, CAO Mengmeng, SHEN Cuiqin, DU Lianfang, LI Zhaojun. A study of the effect of suboptimal glycemic control on subclinical myocardial systolic function in patients with T2DM [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1024-1031. |
[15] | GAO Yu, YIN Shan, PANG Yue, LIANG Wenyi, LIU Yumin. Effect of rhubarb on gut microbiota-host co-metabolism in rats [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 997-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||