Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (2): 145-160.doi: 10.3969/j.issn.1674-8115.2024.02.001
• Basic research •
DENG Qingsong1,2,3(), ZHANG Changqing1,2,3, TAO Shicong1,2()
Received:
2023-08-07
Accepted:
2023-11-30
Online:
2024-02-28
Published:
2024-03-25
Contact:
TAO Shicong
E-mail:dqs1229@163.com;sctao@shsmu.edu.cn
Supported by:
CLC Number:
DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.02.001
siRNA | Sense (5'→3') | Antisense (5'→3') |
---|---|---|
siNPAS2 | CAAAGGAAUUUCCAACUUAUGTT | CAUAAGUUGGAAAUUCCUUUGTT |
siNAMPT | GCAGGACUUGCUCUAAUUAAATT | UUUAAUUAGAGCAAGUCCUGCTT |
siTIPARP | CCAAGAGAACGGAAUUGAAAUTT | AUUUCAAUUCCGUUCUCUUGGTT |
Tab 1 Sequences for siRNA
siRNA | Sense (5'→3') | Antisense (5'→3') |
---|---|---|
siNPAS2 | CAAAGGAAUUUCCAACUUAUGTT | CAUAAGUUGGAAAUUCCUUUGTT |
siNAMPT | GCAGGACUUGCUCUAAUUAAATT | UUUAAUUAGAGCAAGUCCUGCTT |
siTIPARP | CCAAGAGAACGGAAUUGAAAUTT | AUUUCAAUUCCGUUCUCUUGGTT |
Primer | Forward primer (5'→3') | Reverse primer (5'→3') |
---|---|---|
β-actin | CCTCTATGCCAACACAGT | AGCCACCAATCCACACAG |
ACAN | TGGAGACAAGGATGAGTTTCC | GGCGAAGCAGTACACATCATA |
SOX9 | AACACCTTGAGCCTTAAAACG | GATTTCATCTCCTTTGCTTGC |
Tab 2 Primer sequences for RT-qPCR
Primer | Forward primer (5'→3') | Reverse primer (5'→3') |
---|---|---|
β-actin | CCTCTATGCCAACACAGT | AGCCACCAATCCACACAG |
ACAN | TGGAGACAAGGATGAGTTTCC | GGCGAAGCAGTACACATCATA |
SOX9 | AACACCTTGAGCCTTAAAACG | GATTTCATCTCCTTTGCTTGC |
1 | HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759. |
2 | YAO Q, WU X H, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56. |
3 | REVOLLO J R, GRIMM A A, IMAI S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells[J]. J Biol Chem, 2004, 279(49): 50754-50763. |
4 | TRAVELLI C, COLOMBO G, MOLA S, et al. NAMPT: A pleiotropic modulator of monocytes and macrophages[J]. Pharmacol Res, 2018, 135: 25-36. |
5 | GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nat Rev Endocrinol, 2015, 11(9): 535-546. |
6 | JOHNSON S, IMAI S. NAD+ biosynthesis, aging, and disease[J]. F1000Res, 2018, 7: 132. |
7 | YANG S, RYU J H, OH H, et al. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis[J]. Ann Rheum Dis, 2015, 74(3): 595-602. |
8 | PRESLE N, POTTIE P, DUMOND H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production[J]. Osteoarthritis Cartilage, 2006, 14(7): 690-695. |
9 | DAVIS S, MELTZER P S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14):1846-1847. |
10 | HUBER R, HUMMERT C, GAUSMANN U, et al. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane[J]. Arthritis Res Ther, 2008, 10(4): R98. |
11 | WOETZEL D, HUBER R, KUPFER P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation[J]. Arthritis Res Ther, 2014, 16(2): R84. |
12 | STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. |
13 | LIBERZON A, BIRGER C, THORVALDSDÓTTIR H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. |
14 | LEEK J T, JOHNSON W E, PARKER H S, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883. |
15 | RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
16 | YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. |
17 | LIBERZON A, SUBRAMANIAN A, PINCHBACK R, et al. Molecular signatures database (MSigDB) 3.0[J]. Bioinformatics, 2011, 27(12): 1739-1740. |
18 | YANG L, QU Q, HAO Z, et al. Powerful identification of large quantitative trait loci using genome-wide R/glmnet-based regression[J]. J Hered, 2022, 113(4): 472-478. |
19 | NARALA S, LI S Q, KLIMAS N K, et al. Application of least absolute shrinkage and selection operator logistic regression for the histopathological comparison of chondrodermatitis nodularis helicis and hyperplastic actinic keratosis[J]. J Cutan Pathol, 2021, 48(6): 739-744. |
20 | PARK S Y. Nomogram: an analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1793. |
21 | SUN L, PANG Y, WANG X, et al. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters[J]. Acta Pharm Sin B, 2019, 9(4): 702-710. |
22 | XIAO B, LIU L, LI A, et al. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma[J]. Front Oncol, 2020, 10: 607622. |
23 | FRESHOUR S L, KIWALA S, COTTO K C, et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts[J]. Nucleic Acids Res, 2021, 49(D1): D1144-D1151. |
24 | LI J H, LIU S, ZHOU H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(D1): D92-D97. |
25 | ZHOU K R, LIU S, SUN W J, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data[J]. Nucleic Acids Res, 2017, 45(D1): D43-D50. |
26 | NAVAS L E, CARNERO A. NAD+ metabolism, stemness, the immune response, and cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 2. |
27 | WANG Q H, LI Y, DOU D Y, et al. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation[J]. Int Immunopharmacol, 2021, 98: 107856. |
28 | NOWELL M, EVANS L, WILLIAMS A. PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis?[J]. Future Med Chem, 2012, 4(6): 751-769. |
29 | DIOUM E M, RUTTER J, TUCKERMAN J R, et al. NPAS2: a gas-responsive transcription factor[J]. Science, 2002, 298(5602): 2385-2387. |
30 | BECKER-KRAIL D D, PAREKH P K, KETCHESIN K D, et al. Circadian transcription factor NPAS2 and the NAD+-dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward[J]. Eur J Neurosci, 2022, 55(3): 675-693. |
31 | ZHANG L, CAO J, DONG L, et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci USA, 2020, 117(24): 13447-13456. |
32 | SWAHN H, OLMER M, LOTZ M K. RNA-binding proteins that are highly expressed and enriched in healthy cartilage but suppressed in osteoarthritis[J]. Front Cell Dev Biol, 2023, 11: 1208315. |
33 | WYATT L A, NWOSU L N, WILSON D, et al. Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(4): 667-675. |
34 | YANG S, KIM J, RYU J H, et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction[J]. Nat Med, 2010, 16(6): 687-693. |
35 | QIN Y Y, LI M, FENG X, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke[J]. Free Radic Biol Med, 2017, 104: 333-345. |
36 | CORYELL P R, DIEKMAN B O, LOESER R F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57. |
37 | SAVVIDOU O, MILONAKI M, GOUMENOS S, et al. Glucocorticoid signaling and osteoarthritis[J]. Mol Cell Endocrinol, 2019, 480: 153-166. |
38 | SACTA M A, THARMALINGAM B, COPPO M, et al. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages[J]. Elife, 2018, 7: e34864. |
39 | MIHAILIDOU C, PANAGIOTOU C, KIARIS H, et al. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer[J]. Mol Cell Endocrinol, 2016, 436: 211-223. |
40 | DIBATTISTA J A, MARTEL-PELLETIER J, ANTAKLY T, et al. Reduced expression of glucocorticoid receptor levels in human osteoarthritic chondrocytes. Role in the suppression of metalloprotease synthesis[J]. J Clin Endocrinol Metab, 1993, 76(5): 1128-1134. |
41 | PELLETIER J P, DIBATTISTA J A, RANGER P, et al. Modulation of the expression of glucocorticoid receptors in synovial fibroblasts and chondrocytes by prostaglandins and NSAIDs[J]. Am J Ther, 1996, 3(2): 115-119. |
42 | ZHANG F J, LUO W, LEI G H. Role of HIF-1α and HIF-2α in osteoarthritis[J]. Joint Bone Spine, 2015, 82(3): 144-147. |
43 | HU S L, ZHANG C W, NI L B, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11(6): 481. |
44 | OKADA K, MORI D, MAKII Y, et al. Hypoxia-inducible factor-1 α maintains mouse articular cartilage through suppression of NF-κB signaling[J]. Sci Rep, 2020, 10(1): 5425. |
45 | BOUAZIZ W, SIGAUX J, MODROWSKI D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci USA, 2016, 113(19): 5453-5458. |
46 | ZHANG H, WANG L, CUI J, et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression[J]. Sci Adv, 2023, 9(14): eabo7868. |
47 | ZHANG X A, KONG H. Mechanism of HIFs in osteoarthritis[J]. Front Immunol, 2023, 14: 1168799. |
48 | PATTERSON A M, CARTWRIGHT A, DAVID G, et al. Differential expression of syndecans and glypicans in chronically inflamed synovium[J]. Ann Rheum Dis, 2008, 67(5): 592-601. |
49 | KAUFMAN J, CARIC D, VUKOJEVIC K. Expression pattern of Syndecan-1 and HSP-70 in hip tissue of patients with osteoarthritis[J]. J Orthop, 2019, 17: 134-138. |
50 | SALMINEN-MANKONEN H, SÄÄMÄNEN A M, JALKANEN M, et al. Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis[J]. Scand J Rheumatol, 2005, 34(6): 469-474. |
51 | ZHANG Y Q, YANG Y, WANG C Z, et al. Identification of diagnostic biomarkers of osteoarthritis based on multi-chip integrated analysis and machine learning[J]. DNA Cell Biol, 2020, 39(12): 2245-2256. |
52 | HAN Y, WU J, GONG Z, et al. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis[J]. J Transl Med, 2021, 19(1): 522. |
53 | JAIME P, GARCÍA-GUERRERO N, ESTELLA R, et al. CD56+/CD16- natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(10): 1708-1718. |
54 | WANG H, ZENG Y, ZHANG M, et al. CD56brightCD16- natural killer cells are shifted toward an IFN-γ-promoting phenotype with reduced regulatory capacity in osteoarthritis[J]. Hum Immunol, 2019, 80(10): 871-877. |
55 | MORADI B, SCHNATZER P, HAGMANN S, et al. CD4+ CD25⁺/highCD127low/⁻ regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints: analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood[J]. Arthritis Res Ther, 2014, 16(2): R97. |
56 | LI Y S, LUO W, ZHU S A, et al. T cells in osteoarthritis: alterations and beyond[J]. Front Immunol, 2017, 8: 356. |
57 | CHEN K, KOLLS J K. T cell-mediated host immune defenses in the lung[J]. Annu Rev Immunol, 2013, 31: 605-633. |
58 | REN W K, LIU G, CHEN S, et al. Melatonin signaling in T cells: functions and applications[J]. J Pineal Res, 2017, 62(3): e12394. |
59 | ZHANG L, LI Y G, LI Y H, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis[J]. PLoS One, 2012, 7(4): e31000. |
60 | DOLHAIN R J E M, van der HEIDEN A N, TER HAAR N T, et al. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis[J]. Arthritis Rheum, 1996, 39(12): 1961-1969. |
61 | NEES T A, ZHANG J A, PLATZER H, et al. Infiltration profile of regulatory T cells in osteoarthritis-related pain and disability[J]. Biomedicines, 2022, 10(9): 2111. |
62 | KELLY P A, BURCKART G J, VENKATARAMANAN R. Tacrolimus: a new immunosuppressive agent[J]. Am J Health Syst Pharm, 1995, 52(14): 1521-1535. |
63 | KITAHARA K, KAWAI S. Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis[J]. Curr Opin Rheumatol, 2007, 19(3): 238-245. |
64 | BAGRI N K. Cyclosporine for systemic onset juvenile idiopathic arthritis: current stand and future directions[J]. Indian J Pediatr, 2019, 86(7): 576-577. |
65 | MANEIX L, BEAUCHEF G, SERVENT A, et al. 17β-oestradiol up-regulates the expression of a functional UDP-glucose dehydrogenase in articular chondrocytes: comparison with effects of cytokines and growth factors[J]. Rheumatology (Oxford), 2008, 47(3): 281-288. |
66 | CLAASSEN H, SCHÜNKE M, KURZ B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage[J]. Cell Tissue Res, 2005, 319(3): 439-445. |
67 | PANG H W, CHEN S H, KLYNE D M, et al. Low back pain and osteoarthritis pain: a perspective of estrogen[J]. Bone Res, 2023, 11(1): 42. |
[1] | DU Shaoqian, TAO Mengyu, CAO Yuan, WANG Hongxia, HU Xiaoqu, FAN Guangjian, ZANG Lijuan. CXCL9 expression in breast cancer and its correlation with the characteristics of tumor immunoinfiltration [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 860-872. |
[2] | LI Qinglin, WANG Wenbo, LIU Wei. Bioinformatics analysis of pathological mechanism of degenerated tendon via stress deprivation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 560-570. |
[3] | XUE Linlin, LI Binghan, CHANG Lixian, LI Weikun, LIU Chunyun, LIU Li. Construction and evaluation of a nomogram prediction model for bacterial infection in patients with decompensated hepatitis C cirrhosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 52-60. |
[4] | HAN Xiaxia, JIANG Yang, GU Shuangshuang, DAI Dai, SHEN Nan. Transcriptomic analysis of metabolic characteristics of the immune cells in systemic lupus erythematosus patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1197-1207. |
[5] | LIU Hongqiang, LU Yanqing, GAO Yuxuan, WANG Yiyun, WANG Chuandong, ZHANG Xiaoling. Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 846-857. |
[6] | ZHANG Shanyong, YANG Chi. Protocols for diagnosis and treatment of temporomandibular joint osteoarthritis: experience from the TMJ Center of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 709-716. |
[7] | JIN Bu, YUAN Ying, CHEN Wanyu, XU Hudong, HUANG Xiaolei, HE Jialu, YU Hong. Involvement of miRNA target genes in esophageal squamous cell carcinoma through ubiquitination based on GEO database [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 464-471. |
[8] | GONG Qiyu, CHEN Lei. Role of circulating and infiltrating B cells in immune microenvironment of colorectal cancer by multi-omics data profiling [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 472-481. |
[9] | XU Jingxuan, DU Shaoqian, CAO Yuan, WANG Hongxia, HUANG Weiyi. MMP14 expression in pancreatic cancer and its correlation with characteristics of tumor immune microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 312-322. |
[10] | Yekai WANG, Wei CHEN, Yinghui YANG, Jingze WU, Heping WANG, Yanzhen YAO, Zhoujun BAO. Establishment of a nomogram clinical scoring system for the risk of heterotopic ossification in patients undergoing surgery after fracture [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 166-172. |
[11] | DONG Yushan, ZHANG Wenjie. Research progress of cytokines in treatment of osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1627-1632. |
[12] | Jianru WANG, Guangcao PENG, Mingjun ZHU. Screening potential hub genes associated with myocardial ischemia-reperfusion injury in mice based on GEO database and bioinformatics analysis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 51-62. |
[13] | Ying XU, Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG. Construction of a metastasis prediction model of microsatellite instability-high colorectal cancer based on differentially expressed gene assembly [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1197-1206. |
[14] | Bei-bei XUAN, Sai-nan GONG, Jia-li LIU, Quan QUAN, Yu MENG, Xiao-ling MU. Expression and clinical significance of DNA polymerase θ in endometrial cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1207-1214. |
[15] | Wen-cheng HU, Hong-yi ZHU, Jun-qing LIN, Xian-you ZHENG. Research progress in the development of osteoarthritis mediated by pericellular matrix [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1089-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||