Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (11): 1406-1413.doi: 10.3969/j.issn.1674-8115.2024.11.007
• Clinical research • Previous Articles
ZHAN Tianliu(), YAN Zihang, WU Jinjin, CHEN Hao, CHEN Lijun, CHEN Yiwei, FU Lijun()
Received:
2024-06-02
Accepted:
2024-07-05
Online:
2024-11-28
Published:
2024-11-28
Contact:
FU Lijun
E-mail:1961534943@qq.com;fulijun@scmc.com.cn
Supported by:
CLC Number:
ZHAN Tianliu, YAN Zihang, WU Jinjin, CHEN Hao, CHEN Lijun, CHEN Yiwei, FU Lijun. Analysis of clinical and genetic characteristics of 18 pediatric patients with Barth syndrome[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1406-1413.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.11.007
Sample | Age of onset /month | Age at diagnosis /month | Birth weight/g | Age at death /month | Cause of death | First presentation | Genotype | LVEF/LVFS /% | LVEDd Z score | LVPWd Z score | NC/C | Prolonged QTc | Neutropenia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BTHS 1 | 2.5 | 3 | 2 000 | 7 | Heart failure with fever | Pneumonia | c.527A>G | 45.6/22.1 | 5.7 | 0.45 | 1.58 | - | - |
BTHS 2 | 2.5 | 3 | 2 400 | 7.5 | Heart failure with fever | Heart failure | c.527A>G | 36.2/16.7 | 3.8 | -0.12 | 2.2 | - | - |
BTHS 3 | 6 | 20 | 2 850 | 77 | Accidental asphyxiation in a vegetative state | Muscle weakness | c.367C>T | 40.1/19.1 | 3.3 | 1.96 | 2.11 | - | + |
BTHS 4 | 6.5 | 6.5 | 2 300 | 7.5 | Ventricular fibrillation | Pneumonia | c.710_711delTG | 36.8/17.3 | 5.3 | 2.18 | 2.75 | - | + |
BTHS 5 | 1 | 1 | 2 650 | 12 | Heart failure and respiratory infection | Heart failure | c.134_136delinsCC | 40.1/18.9 | 5.7 | 0.9 | 4 | + | + |
BTHS 6 | 0 | 6 | 3 620 | Alive | - | Cardiomyopathy | c.324_325insCACTCC | 62/31 | 0.24 | 1.54 | 2.19 | + | + |
BTHS 7 | 4 | 6 | 2 500 | 6 | Sudden death | Growth delay | del TAZ | 48.1/23.2 | 2.24 | 4.24 | 2.09 | - | + |
BTHS 8 | 0 | 1 | 3 100 | Alive | - | Cardiomyopathy | c.718G>A | 46.2/21.5 | 1.51 | 1.84 | 2.68 | + | + |
BTHS 9 | 1 | 1 | 3 250 | 13 | Heart failure and respiratory infection | Diarrhea | c.589G>A | 41.1/19.2 | 3.56 | NA | 1.95 | + | - |
BTHS 10 | In utero | 2 | 2 550 | Alive | - | Cardiomyopathy | c.193A>G | 35/15 | 4.46 | -0.65 | 2.85 | + | + |
BTHS 11 | 4 | 4 | 2 400 | 5 | Heart failure | Heart failure | c.226C>T | 47.5/23.2 | 5.38 | 3.57 | 2.47 | - | - |
BTHS 12 | 5.5 | 5.5 | 2 500 | Alive | - | Pneumonia | c.207C>A | 44/21 | 4.65 | 2.27 | 2.4 | + | - |
BTHS 13 | 2 | 2 | 3 550 | alive | - | Heart failure | c.85G>A | 32.6/15 | 5.93 | 3.09 | 1.9 | + | - |
BTHS 14 | 1 | 1 | 3 050 | 7.5 | Sudden death | Cardiomyopathy | Del exon 3‒5 | 50.8/24.9 | 2.64 | 2.17 | 2 | - | - |
BTHS 15 | 5 | 5 | 3 210 | 17 | Sudden death | Diarrhea | c.777+1G>A | 20/8.6 | 5.22 | 2.84 | 1.63 | + | - |
BTHS 16 | In utero | 0 | 2 315 | 0.1 | Heart failure | Cardiomyopathy | c.699+1G>A | 26.4/11.7 | 6.28 | 0.92 | 2 | - | - |
BTHS 17 | 3 | 3 | 2 800 | Alive | - | Cardiomyopathy | c.589G>A | 61.4/31.3 | -0.02 | 4.41 | 1.94 | NA | + |
BTHS 18 | 4 | 4 | 4 150 | 6 | Heart failure | Feeding difficulties | c.367C>T | 41/19 | 4.93 | 4.22 | 1.5 | + | + |
Tab 1 Clinical characteristics of 18 BTHS patients
Sample | Age of onset /month | Age at diagnosis /month | Birth weight/g | Age at death /month | Cause of death | First presentation | Genotype | LVEF/LVFS /% | LVEDd Z score | LVPWd Z score | NC/C | Prolonged QTc | Neutropenia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BTHS 1 | 2.5 | 3 | 2 000 | 7 | Heart failure with fever | Pneumonia | c.527A>G | 45.6/22.1 | 5.7 | 0.45 | 1.58 | - | - |
BTHS 2 | 2.5 | 3 | 2 400 | 7.5 | Heart failure with fever | Heart failure | c.527A>G | 36.2/16.7 | 3.8 | -0.12 | 2.2 | - | - |
BTHS 3 | 6 | 20 | 2 850 | 77 | Accidental asphyxiation in a vegetative state | Muscle weakness | c.367C>T | 40.1/19.1 | 3.3 | 1.96 | 2.11 | - | + |
BTHS 4 | 6.5 | 6.5 | 2 300 | 7.5 | Ventricular fibrillation | Pneumonia | c.710_711delTG | 36.8/17.3 | 5.3 | 2.18 | 2.75 | - | + |
BTHS 5 | 1 | 1 | 2 650 | 12 | Heart failure and respiratory infection | Heart failure | c.134_136delinsCC | 40.1/18.9 | 5.7 | 0.9 | 4 | + | + |
BTHS 6 | 0 | 6 | 3 620 | Alive | - | Cardiomyopathy | c.324_325insCACTCC | 62/31 | 0.24 | 1.54 | 2.19 | + | + |
BTHS 7 | 4 | 6 | 2 500 | 6 | Sudden death | Growth delay | del TAZ | 48.1/23.2 | 2.24 | 4.24 | 2.09 | - | + |
BTHS 8 | 0 | 1 | 3 100 | Alive | - | Cardiomyopathy | c.718G>A | 46.2/21.5 | 1.51 | 1.84 | 2.68 | + | + |
BTHS 9 | 1 | 1 | 3 250 | 13 | Heart failure and respiratory infection | Diarrhea | c.589G>A | 41.1/19.2 | 3.56 | NA | 1.95 | + | - |
BTHS 10 | In utero | 2 | 2 550 | Alive | - | Cardiomyopathy | c.193A>G | 35/15 | 4.46 | -0.65 | 2.85 | + | + |
BTHS 11 | 4 | 4 | 2 400 | 5 | Heart failure | Heart failure | c.226C>T | 47.5/23.2 | 5.38 | 3.57 | 2.47 | - | - |
BTHS 12 | 5.5 | 5.5 | 2 500 | Alive | - | Pneumonia | c.207C>A | 44/21 | 4.65 | 2.27 | 2.4 | + | - |
BTHS 13 | 2 | 2 | 3 550 | alive | - | Heart failure | c.85G>A | 32.6/15 | 5.93 | 3.09 | 1.9 | + | - |
BTHS 14 | 1 | 1 | 3 050 | 7.5 | Sudden death | Cardiomyopathy | Del exon 3‒5 | 50.8/24.9 | 2.64 | 2.17 | 2 | - | - |
BTHS 15 | 5 | 5 | 3 210 | 17 | Sudden death | Diarrhea | c.777+1G>A | 20/8.6 | 5.22 | 2.84 | 1.63 | + | - |
BTHS 16 | In utero | 0 | 2 315 | 0.1 | Heart failure | Cardiomyopathy | c.699+1G>A | 26.4/11.7 | 6.28 | 0.92 | 2 | - | - |
BTHS 17 | 3 | 3 | 2 800 | Alive | - | Cardiomyopathy | c.589G>A | 61.4/31.3 | -0.02 | 4.41 | 1.94 | NA | + |
BTHS 18 | 4 | 4 | 4 150 | 6 | Heart failure | Feeding difficulties | c.367C>T | 41/19 | 4.93 | 4.22 | 1.5 | + | + |
Item | M (Q1, Q3) |
---|---|
LVEF/% | 41.1 (35.9, 47.7) |
LVFS/% | 19.2 (16.3, 23.2) |
LVEDd Z score | 4.56 (2.54, 5.46) |
LVPWd Z score | 2.17 (0.91, 3.33) |
NC/C | 2.10 (1.93, 2.52) |
Tab 2 Echocardiographic measurements of 18 patients at initial diagnosis
Item | M (Q1, Q3) |
---|---|
LVEF/% | 41.1 (35.9, 47.7) |
LVFS/% | 19.2 (16.3, 23.2) |
LVEDd Z score | 4.56 (2.54, 5.46) |
LVPWd Z score | 2.17 (0.91, 3.33) |
NC/C | 2.10 (1.93, 2.52) |
Location | Nucleotide change | Amino acid change | Type of mutation | Number of pedigree | Mother with proven TAZ mutation |
---|---|---|---|---|---|
Exon 1 | c.85G>A | p.G29S | Missense mutation | 1 | Yes |
Exon 2 | c.134_136delinsCC | p.H45PfsX38 | Frameshift mutation | 1 | Yes |
Exon 2 | c.193A>G | p.T65A | Missense mutation | 1 | Yes |
Exon 2 | c.207C>A | p.H69Q | Missense mutation | 1 | Yes |
Exon 2 | c.226C>T | p.P76S | Missense mutation | 1 | Yes |
Exon 3‒5 | Del exon 3‒5 | Exon deletions | 1 | Yes | |
Exon 4 | c.324_325insCACTCC | p.111_112insSH | Inframe mutation | 1 | Not mutated |
Exon 4 | c.367C>T | p.R123X | Nonsense mutation | 2 | Yes |
Exon 6 | c.527A>G | p.H176R | Missense mutation | 2 | Yes |
Exon 8 | c.589G>A | p.G197R | Missense mutation | 2 | Yes |
Exon 10 | c.710_711delTG | p.V237AfsX73 | Frameshift mutation | 1 | Yes |
Exon 10 | c.718G>A | p.G240R | Missense mutation | 1 | Yes |
Intron 9 | c.699+1G>A | p.? | Splicing defect | 1 | Not available |
Intron 10 | c.777+1G>A | p.? | Splicing defect | 1 | Yes |
TAZ gene | Del TAZ gene | Gene deletion | 1 | Not available |
Tab 3 Mutations in 18 BTHS patients
Location | Nucleotide change | Amino acid change | Type of mutation | Number of pedigree | Mother with proven TAZ mutation |
---|---|---|---|---|---|
Exon 1 | c.85G>A | p.G29S | Missense mutation | 1 | Yes |
Exon 2 | c.134_136delinsCC | p.H45PfsX38 | Frameshift mutation | 1 | Yes |
Exon 2 | c.193A>G | p.T65A | Missense mutation | 1 | Yes |
Exon 2 | c.207C>A | p.H69Q | Missense mutation | 1 | Yes |
Exon 2 | c.226C>T | p.P76S | Missense mutation | 1 | Yes |
Exon 3‒5 | Del exon 3‒5 | Exon deletions | 1 | Yes | |
Exon 4 | c.324_325insCACTCC | p.111_112insSH | Inframe mutation | 1 | Not mutated |
Exon 4 | c.367C>T | p.R123X | Nonsense mutation | 2 | Yes |
Exon 6 | c.527A>G | p.H176R | Missense mutation | 2 | Yes |
Exon 8 | c.589G>A | p.G197R | Missense mutation | 2 | Yes |
Exon 10 | c.710_711delTG | p.V237AfsX73 | Frameshift mutation | 1 | Yes |
Exon 10 | c.718G>A | p.G240R | Missense mutation | 1 | Yes |
Intron 9 | c.699+1G>A | p.? | Splicing defect | 1 | Not available |
Intron 10 | c.777+1G>A | p.? | Splicing defect | 1 | Yes |
TAZ gene | Del TAZ gene | Gene deletion | 1 | Not available |
1 | BARTH P G, SCHOLTE H R, BERDEN J A, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes[J]. J Neurol Sci, 1983, 62(1/2/3): 327-355. |
2 | MILLER P C, REN M D, SCHLAME M, et al. A Bayesian analysis to determine the prevalence of Barth syndrome in the pediatric population[J]. J Pediatr, 2020, 217: 139-144. |
3 | ROBERTS A E, NIXON C, STEWARD C G, et al. The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study[J]. Am J Med Genet A, 2012, 158A(11): 2726-2732. |
4 | LIPSHULTZ S E, LAW Y M, ASANTE-KORANG A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association[J]. Circulation, 2019, 140(1): e9-e68. |
5 | JENNI R, OECHSLIN E, SCHNEIDER J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy[J]. Heart, 2001, 86(6): 666-671. |
6 | STEWARD C G, GROVES S J, TAYLOR C T, et al. Neutropenia in Barth syndrome: characteristics, risks, and management[J]. Curr Opin Hematol, 2019, 26(1): 6-15. |
7 | CLARKE S L, BOWRON A, GONZALEZ I L, et al. Barth syndrome[J]. Orphanet J Rare Dis, 2013, 8(1): 23. |
8 | KANG S L, FORSEY J, DUDLEY D, et al. Clinical characteristics and outcomes of cardiomyopathy in Barth syndrome: the UK experience[J]. Pediatr Cardiol, 2016, 37(1): 167-176. |
9 | SPENCER C T, BRYANT R M, DAY J, et al. Cardiac and clinical phenotype in Barth syndrome[J]. Pediatrics, 2006, 118(2): e337-e346. |
10 | PANG J, BAO Y, MITCHELL-SILBAUGH K, et al. Barth syndrome cardiomyopathy: an update [J]. Genes (Basel), 2022, 13(4): 231-241. |
11 | GARLID A O, SCHAFFER C T, KIM J, et al. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome[J]. Gene, 2020, 726: 144148. |
12 | CONSORTIUM U. UniProt: the universal protein knowledgebase in 2023[J]. Nucleic Acids Res, 2023, 51(D1): D523-D531. |
13 | IMAI-OKAZAKI A, KISHITA Y, KOHDA M, et al. Barth syndrome: different approaches to diagnosis[J]. J Pediatr, 2018, 193: 256-260. |
14 | D'ADAMO P, FASSONE L, GEDEON A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies[J]. Am J Hum Genet, 1997, 61(4): 862-867. |
15 | CANTLAY A M, SHOKROLLAHI K, ALLEN J T, et al. Genetic analysis of the G4.5 gene in families with suspected Barth syndrome[J]. J Pediatr, 1999, 135(3): 311-315. |
16 | RIGAUD C, LEBRE A S, TOURAINE R, et al. Natural history of Barth syndrome: a national cohort study of 22 patients[J]. Orphanet J Rare Dis, 2013, 8: 70. |
17 | HIRONO K, HATA Y, NAKAZAWA M, et al. Clinical and echocardiographic impact of tafazzin variants on dilated cardiomyopathy phenotype in left ventricular non-compaction patients in early infancy[J]. Circ J, 2018, 82(10): 2609-2618. |
18 | SABBAH H N. Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide[J]. Heart Fail Rev, 2021, 26(2): 237-253. |
19 | THOMPSON W R, MANUEL R, ABBRUSCATO A, et al. Long-term efficacy and safety of elamipretide in patients with Barth syndrome: 168-week open-label extension results of TAZPOWER[J]. Genet Med, 2024, 26(7): 101138. |
20 | HORNBY B, THOMPSON W R, ALMUQBIL M, et al. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome[J]. Orphanet J Rare Dis, 2022, 17(1): 336. |
21 | SCHAFER C, MOORE V, DASGUPTA N, et al. The effects of PPAR stimulation on cardiac metabolic pathways in Barth syndrome mice[J]. Front Pharmacol, 2018, 9: 318. |
22 | HUANG Y, POWERS C, MOORE V, et al. The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome[J]. Orphanet J Rare Dis, 2017, 12(1): 49. |
23 | DABNER L, PIELES G E, STEWARD C G, et al. Treatment of Barth syndrome by cardiolipin manipulation (CARDIOMAN) with bezafibrate: protocol for a randomized placebo-controlled pilot trial conducted in the nationally commissioned Barth syndrome service[J]. JMIR Res Protoc, 2021, 10(5): e22533. |
24 | ZEGALLAI H M, HATCH G M. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets[J]. Mol Cell Biochem, 2021, 476(3): 1605-1629. |
25 | THOMPSON R, JEFFERIES J, WANG S Y, et al. Current and future treatment approaches for Barth syndrome[J]. J Inherit Metab Dis, 2022, 45(1): 17-28. |
26 | LI Y, GODOWN J, TAYLOR C L, et al. Favorable outcomes after heart transplantation in Barth syndrome[J]. J Heart Lung Transplant, 2021, 40(10): 1191-1198. |
[1] | JIN Bu, CHEN Hanzhang, XU Hudong, CHEN Wanyu, YUAN Ying, ZHAO Tingting, HUANG Xiaolei, HE Jialu, YU Hong. Study on the mechanism of trimethylamine oxide damaging cardiac function in mice with hypertrophic cardiomyopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 325-333. |
[2] | LIU Qiming, LU Qifan, CHAI Yezi, JIANG Meng, PU Jun. Short-axis cine cardiac magnetic resonance images-derived radiomics for hypertrophic cardiomyopathy and healthy control classification [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 79-86. |
[3] | Bo CHEN, Peng-jun ZHAO. Risk factor and management strategy of premature ventricular contraction-induced cardiomyopathy in children [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 977-981. |
[4] | Ying LIU, Yu-rong WU, Kun SUN. Cardiovascular involvement in propionic acidemia and related mechanisms [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 799-802. |
[5] | Ye-zi CHAI, Meng JIANG, Jun PU. Relation between body mass index and left ventricular structure and function in patients with hypertrophic cardiomyopathy: a cardiovascular magnetic resonance imaging study [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1636-1641. |
[6] | JIANG Xun-wei, SUN Xing-hua, ZHANG Han, XIAO Ting-ting, ZHANG Yong-wei, XIE Li-jian. Change of left ventricular torsion function and systolic synchronization in children with hypertrophic cardiomyopathy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(7): 929-935. |
[7] | ZHANG Peng1, CHANG Zheng-yan2, YANG Lei1, XUE Song1, LIAN Feng1. Bioinformatics analysis of differentially expressed genes in ischemic cardiomyopathy [J]. , 2019, 39(7): 698-. |
[8] | WU Hao, WAN Qing, GAO Cheng-jie, TAO Yi-jing, XIA Zhi-li, WEI Meng, PAN Jing-wei . Difference in myocardial strain between obstructive hypertrophy cardiomyopathy and nonobstructive hypertrophy cardiomyopathy [J]. , 2017, 37(5): 637-. |
[9] | LI Hai-qing, ZHOU Ren, YAO Hao-yi, YUAN Zhi-ze, WANG Zhe, CHEN An-qing, ZHAO Qiang . Surgical treatment with RPR technique for complex hypertrophic obstructive cardiomyopathy [J]. , 2017, 37(3): 348-. |
[10] | XING Dong-mei, ZHU Ming-jun, WU Tai-xiang, et al. Systematic evaluation of therapeutic effect and safety of stem cell transplantation for dilated cardiomyopathy [J]. , 2012, 32(3): 321-. |
[11] | DIAO Xue-hong, SHEN E, HU Bing, et al. Analysis of microRNA expression profile in cardiac muscle tissues of diabetic mice [J]. , 2010, 30(10): 1194-. |
[12] | NIU Lin, LU Ying-jing, XU Da-di, et al. Research on parameters of ultrasonic integrated backscatter of cardiac blood in children with dilated cardiomyopathy [J]. , 2009, 29(9): 1101-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||