上海交通大学学报(医学版), 2023, 43(3): 380-384 doi: 10.3969/j.issn.1674-8115.2023.03.015

综述

四面体框架核酸在医学领域的应用与研究进展

谢莎莎,1, 吕叶辉,1,2, 林涧2,3

1.上海健康医学院基础医学院解剖组胚教研室,上海 201318

2.上海健康医学院创面防治研究所,上海 201318

3.上海健康医学院附属崇明医院骨科修复重建中心,上海 202150

Application and research progress of tetrahedral framework nucleic acids in the field of medicine

XIE Shasha,1, LÜ Yehui,1,2, LIN Jian2,3

1.Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China

2.Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China

3.Department of Center for Orthopedic Repair and Reconstruction, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 202150, China

通讯作者: 吕叶辉,电子信箱:lvyh_15@sumhs.edu.cn

第一联系人: (谢莎莎、吕叶辉并列第一作者)

编委: 张慧俊

收稿日期: 2022-04-27   接受日期: 2023-01-18   网络出版日期: 2023-03-28

基金资助: 国家级大学生创新训练计划.  202210262058
上海市青年科技英才扬帆计划.  21YF1418800

Corresponding authors: LÜ Yehui, E-mail:lvyh_15@sumhs.edu.cn.

Received: 2022-04-27   Accepted: 2023-01-18   Online: 2023-03-28

作者简介 About authors

谢莎莎(2001—),女,本科生;电子信箱:407641947@qq.com E-mail:407641947@qq.com

谢莎莎(2001—),女,本科生;电子信箱:407641947@qq.com E-mail:407641947@qq.com

摘要

自1982年由Seeman首次提出后,DNA纳米结构的开发逐渐完善,其相关材料在生物医学领域得到了长足的发展和广泛的应用。近年来,作为3D DNA纳米结构材料的代表,四面体框架核酸因其良好的生物相容性、可编辑性、高稳定性及易制备性等优势,在生物传感器、肿瘤治疗、抗原检测、再生医学等前沿领域取得了一定的研究进展,具有良好的应用前景。该文简述了四面体框架核酸的相关概念,并从治疗应用的角度总结了四面体框架核酸在以下领域的应用与研究进展:① 生物载体与肿瘤给药,如构建新型自组装复合体改善游离药物药效、搭载小分子RNA减缓癌症进程、自组装复合体精准靶向治疗等。② 调节炎症与免疫应答,如降低炎性因子、治疗炎症性疾病、预防糖尿病、作为免疫调节剂等。③ 促进组织再生,如促进干细胞增殖和分化、促进周围神经再生、通过血管新生促进创面修复等。该综述对四面体框架核酸的研究进展进行了总结,在分析现有研究不足的基础上展望了其应用前景,以期为进一步研究提供参考。

关键词: 四面体框架核酸 ; 生物载体 ; 肿瘤 ; 炎症 ; 免疫应答 ; 组织再生 ; 创面修复

Abstract

Since the first proposal by Seeman in 1982, DNA nanostructures have been gradually improved, and have been widely developed and applied to the field of biomedical fields. In recent years, as a representative of 3D DNA nanostructures, tetrahedral framework nucleic acids (tFNA) has made certain research progress and has good application prospects in frontier fields such as biosensors, tumor therapy, antigen detection, regenerative medicine, with the advantages of their good biocompatibility, editability, high stability and easy preparation. This paper briefly describes the concepts of tFNA, and summarizes the applications and research progress of tFNA in the following fields from the perspective of therapeutic applications: ① Building novel self-assembled complexes to improve the efficacy of free drugs, carrying small RNA molecules to slow down tumor progression, and self-assembled complexes for targeted therapy, etc, as biological vectors and tumor drug delivery. ② Regulating inflammation and immune response, such as reducing the level of inflammatory factors, treating inflammatory diseases, preventing diabetes, and acting as immunomodulators, etc. ③ Enhancing tissue regeneration, such as promoting stem cell proliferation and differentiation, stimulating peripheral nerve regeneration, and facilitating wound repair through angiogenesis. This review summarizes the research progress of tFNA, and looks forward to its application prospects based on the analysis of the shortcomings of existing research, in order to provide reference for further research.

Keywords: tetrahedral framework nucleic acid (tFNA) ; biological vector ; tumor ; inflammation ; immune response ; tissue regeneration ; wound repair

PDF (1502KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

谢莎莎, 吕叶辉, 林涧. 四面体框架核酸在医学领域的应用与研究进展. 上海交通大学学报(医学版)[J], 2023, 43(3): 380-384 doi:10.3969/j.issn.1674-8115.2023.03.015

XIE Shasha, LÜ Yehui, LIN Jian. Application and research progress of tetrahedral framework nucleic acids in the field of medicine. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(3): 380-384 doi:10.3969/j.issn.1674-8115.2023.03.015

自1982年由SEEMAN1首次设计出第一个四臂核酸连接点后,DNA纳米结构的开发逐渐完善,相关纳米材料在生物医学领域得到了长足的发展和广泛的应用。近年来,第3代纳米结构实现了从二维(two-dimensional,2D)到三维(3D)结构的突破,而3D DNA纳米技术因此得到了广泛的应用。作为3D DNA纳米结构的代表,四面体框架核酸(tetrahedral framework nucleic acid,tFNA)由TURBERFIELD及合作者开发,为4条长度相等的单链DNA等量混合构成。四面体的每个面由3个单链DNA(single-stranded DNA,ssDNA)短序列与同一条ssDNA的序列相配对组成,形成了一个尺寸可控、具有刚性的DNA三维结构(图1);因其边长小于10 nm,可实现在几秒钟内自我组装2。tFNA具备丰富的修饰位点,药物或具有功能的小分子物质可以通过碱基配对的方式被修饰在其顶点的ssDNA或者配对的双链DNA之间,甚至可以直接封装在tFNA结构中并靶向到目标部位,进一步发挥其生物学功能3-4

图1

图1   tFNA的自组装结构示意图

Fig 1   Schematic diagram of the self-assembled structure of tFNA


tFNA因其大小和形状可控性良好、制备简单、机械强度高,同时具有良好的生物相容性和膜通透性等优势5,在生物传感器、肿瘤治疗、抗原检测、再生医学等前沿领域取得了一定的研究进展,具有良好的应用前景。本文在梳理现有研究的基础上,从治疗应用的角度就目前tFNA在医学领域中的研究进展进行综述。

1 tFNA在生物载体功能及在肿瘤给药中的作用

tFNA具备良好的生物相容性、高生物安全性和低成本的特点,可以作为生物载体有效地将治疗成分递送到细胞中,同时克服药物的不稳定性和生物障碍,并且使其具有更好的分散性和稳定性,通过改善游离药物的药效从而提高其治疗效果。tFNA的典型空间结构对细胞壁或细胞膜具有渗透性,可以有效增强药效。SUN等6利用tFNA作为载体搭载红霉素,在改变大肠埃希菌细胞壁的通透性的基础上,通过提升药物的跨膜转运效率,增加了细菌对红霉素的摄取,降低了耐药性,即基于tFNA的给药系统增强了红霉素对大肠埃希菌的作用。tFNA作为载体还可以保持药物稳定性,ZHANG等7合成出含有Cur负载的tFNA(Cur-tFNA),与游离Cur相比表现出更强的药物稳定性、良好的生物相容性、易于摄取和更高的组织利用率。

虽然紫杉醇、阿霉素等常规的化学治疗(化疗)药物具备强大的抗肿瘤作用,但因其选择性差、摄取率低且不良反应严重等情况也影响患者的生活质量8。利用tFNA搭载传统化疗药物也能够增强其稳定性和摄取效率,减慢癌症进程,提高治疗效果。SONG等9利用tFNA作为载体来克服递送小分子RNA的生物障碍,有效地将两种靶向RNA治疗药物转移到胰腺癌细胞中,通过有效抑制铜转运蛋白的表达,比游离的RNA治疗药物更有效地防止铜的摄入,从而显著减慢胰腺癌细胞的进展。一些研究者10将AS1411适配体整合到tFNA上,发现其比单链适配体更能抵抗核酸酶降解,并且能够增强细胞内摄取同时选择性地抑制癌细胞的生长。XIE等11证明与单独的紫杉醇相比,利用静电作用吸附在tFNA上的紫杉醇复合体对非小细胞肺癌细胞和紫杉醇抗性细胞都具备更强的杀伤力,同时可解决药物的耐药性问题。

tFNA搭载药物为癌症的精准靶向治疗也提供了新思路。MA等12将抗人类表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)适配体(anti-HER2 aptamer,HApt)定点锚定在tFNA上组成的DNA纳米机器人(HApt-tFNA)可以靶向HER2阳性乳腺癌细胞,并特异性诱导膜蛋白HER2的溶酶体降解,诱导细胞凋亡、抑制肿瘤细胞生长。ZHANG等13构建的自组装tFNA搭载抗HER2适配体也显示出优异的靶向能力,亦能诱导肿瘤细胞凋亡。QIAN等14研究发现由tFNA搭载CpG-寡脱氧核苷酸(CpG-oligodeoxynucleotide,CpG-ODN)和小干扰RNA(small interfering RNA,siRNA)的复合物(CpG-siRNA-tFNA)在乳腺癌异种移植小鼠模型中表现出优异的抗肿瘤功效,且未发现明显的不良反应。

2 tFNA在炎症及免疫应答中的调节作用

现有研究表明,tFNA可有效降低炎症因子水平,抑制炎症反应,为治疗炎症相关疾病提供了新的思路。重症急性胰腺炎(severe acute pancreatitis,SAP)会引发全身炎症反应,导致多器官衰竭甚至死亡,主要治疗目标依然是及时有效控制和减少全身炎性反应对器官的损伤。WANG等15在小鼠SAP模型中发现,经tFNA治疗后,相关炎性因子的表达明显降低,与细胞凋亡和坏死相关的蛋白表达发生改变,表明tFNA可以减轻SAP的全身炎性反应和多器官损伤。tFNA在牙周疾病中的应用也有报道。ZHOU等16通过动物实验证实tFNA可以降低牙周韧带干细胞中促炎因子[白介素6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和IL-1β等]的表达水平和细胞活性氧的含量,改善牙周炎症、保护牙周组织,即tFNA可提高牙周炎的治疗效果。

随着免疫疗法的不断完善,tFNA也为调控免疫细胞功能、提高免疫治疗效果提供了新的解决方案。目前糖尿病的治疗也有免疫耐受的问题,而tFNA可以重建免疫耐受性,预防慢性炎症、减轻胰岛素抵抗。GAO等17发现tFNA能够诱导分化调节性免疫细胞并抑制胰腺的辅助T细胞,通过恢复外周免疫耐受保护胰岛素的β-细胞的活性,能有效预防非肥胖1型糖尿病的发生。LI等18合成了携带白藜芦醇(resveratrol,RSV)的tFNA,通过抑制辅助性T细胞1(helper T cell 1,Th1)和Th17亚群的活化,促进Th2和调节性T细胞的分化,可有效抑制组织炎症,缓解肥胖小鼠的胰岛素抵抗情况。因此,tFNA有望成为解决胰岛素抵抗、改善胰岛功能的有效手段。自身免疫性疾病是一组对自身抗原失去免疫耐受性的异质性疾病,而tFNA对T细胞具有免疫调节作用,有望成为免疫疗法的新兴手段。在生理条件下,LIU等19发现tFNA通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路依赖性方式,选择性调节T细胞介导的适应性免疫。该研究表明,tFNA对刺激性T细胞分泌的γ干扰素(interferon-γ,IFN-γ)具有显著的抑制作用,但却不影响TNF的释放。

3 tFNA在组织再生中的促进作用

已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生20。LI等21发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化。FU等22的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生。上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施。此外,如前文所述,ZHOU等16探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能。

神经组织工程技术在周围神经损伤修复中的应用一直是相关领域的研究热点,tFNA也有着良好的应用潜能。YAO等23证实tFNA通过神经生长因子(nerve growth factor,NGF)/磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)信号通路,激活一系列与受损神经修复相关的神经生长因子的表达,也观察到增殖和迁移等细胞行为。该研究在体实验还表明tFNA能上调轴突和髓鞘标志物蛋白表达,在面神经损伤中可有效促进神经修复再生,恢复神经传导能力。

老年慢性创面愈合,特别是糖尿病溃疡的愈合修复机制是相关领域的研究热点,而tFNA可以通过血管新生有效促进创面修复。LIN等24通过系列实验表明tFNA可以通过Akt/核转录因子E2相关因子(nuclear factor E2-related factor 2,Nrf2)/血红素加氧-1(heme oxygenase-1,HO-1)信号通路,保护内皮细胞功能、降低炎症水平、阻止氧化损伤,进而加速血管形成、上皮形成、胶原沉积和胶原排列,有效促进糖尿病创面的愈合。同时,ZHAO等25构建了2个新型的Apt-tFNA纳米结构:tFNA-Apt02和血管内皮生长因子Apt(Apt for vascular endothelial growth factor,AptVEGF)修饰的tFNA-AptVEGF;这2种结构在体内外均具有加速内皮细胞增殖和迁移能力,并促进血管生成。上述两项研究从血管新生的角度表明tFNA在创面修复中具有潜力,也为组织工程血管化应用提供了理论基础和实验依据。

4 结语与展望

近年来,tFNA作为目前理想的3D DNA纳米结构材料,在作为生物载体与肿瘤给药、调节炎症和免疫应答以及促进组织再生功能等方面取得很大的研究进展。科研人员也在尝试探索基于动态系统的tFNA在抗衰老和基因治疗中的应用潜能。

尽管tFNA展现出很多优势与潜力,但其在体内的稳定性以及安全性问题依然在一定程度上限制了tFNA在医学领域中的广泛应用(表1)。同时,多数现有研究主要为动物实验,tFNA在人体中的治疗效果还需进一步评估和证明。在改良生物稳定性、最大负载量和结构可控性的基础上,如何进一步提升tFNA组装复合体的靶向性、安全性和治疗效果,可能是破局现有研究不足的关键,也是未来的研究方向。

表1   tFNA目前的应用方向、优势以及不足

Tab 1  Current application directions, advantages and shortcomings of tFNA

Application directionAdvantageShortcoming
Protecting probes from enzymatic degradation[26]Good biocompatibility, editability, high stability and ease of preparation[5]Biological stability, maximum load and structural controllability still need to be improved
Being as biological vectors; tumor drug delivery for precise targeting therapy [9-13]Targeted action, enhanced drug stability and uptake efficiency [6-7]

Biosafety to be verified;

lack of systematic research on long-term impacts

Treating inflammatory diseases, acting as immunomodulators [15-19]Regulating inflammation and immune response [15-19]

Most of them are animal experiments, and the

effect on human beings is yet to be proved

Promoting tissue regeneration [23-25]Promoting stem cell proliferation and differentiation and migration [23-25]The specific mechanisms of interaction with molecules and organisms are less studied.

新窗口打开| 下载CSV


作者贡献声明

谢莎莎、吕叶辉参与了论文的写作和修订,林涧参与了论文的审核。所有作者均阅读并同意了最终稿件的提交。

The manuscript was drafted and revised by XIE Shasha and LÜ Yehui. The manuscript was reviewed by LIN Jian. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

SEEMAN N C. Nucleic acid junctions and lattices[J]. J Theor Biol, 1982, 99(2): 237-247.

[本文引用: 1]

GOODMAN R P, SCHAAP I A, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication[J]. Science, 2005, 310(5754): 1661-1665.

[本文引用: 1]

ZHANG T, CUI W T, TIAN T R, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47115-47126.

[本文引用: 1]

ZHANG X L, LIU N X, ZHOU M, et al. The application of tetrahedral framework nucleic acids as a drug carrier in biomedicine fields[J]. Curr Stem Cell Res Ther, 2021, 16(1): 48-56.

[本文引用: 1]

叶德楷, 左小磊, 樊春海. 基于DNA纳米结构的传感界面调控及生物检测应用[J]. 化学进展, 2017, 29(1): 36-46.

[本文引用: 2]

YE D K, ZUO X L, FAN C M. DNA nanostructure-based engineering of the biosensing interface for biomolecular detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.

[本文引用: 2]

SUN Y, LIU Y H, ZHANG B W, et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli)[J]. Bioact Mater, 2021, 6(8): 2281-2290.

[本文引用: 2]

ZHANG M, ZHANG X L, TIAN T R, et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis[J]. Bioact Mater, 2022, 8: 368-380.

[本文引用: 2]

AIUTI A, BIASCO L, SCARAMUZZA S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome[J]. Science, 2013, 341(6148): 1233151.

[本文引用: 1]

SONG G Q, DONG H S, MA D H, et al. Tetrahedral framework nucleic acid delivered RNA therapeutics significantly attenuate pancreatic cancer progression via inhibition of CTR1-dependent copper absorption[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46334-46342.

[本文引用: 2]

CHAROENPHOL P, BERMUDEZ H. Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5): 1721-1725.

[本文引用: 1]

XIE X, SHAO X, MA W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018, 10(12): 5457-5465.

[本文引用: 1]

MA W J, ZHAN Y X, ZHANG Y X, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2[J]. Nano Lett, 2019, 19(7): 4505-4517.

[本文引用: 1]

ZHANG T, TIAN T R, ZHOU R H, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment[J]. Nat Protoc, 2020, 15(8): 2728-2757.

[本文引用: 2]

QIAN H S, ZHOU T, FU Y X, et al. Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity[J]. Mol Ther Nucleic Acids, 2022, 27: 763-773.

[本文引用: 1]

WANG Y, LI Y J, GAO S, et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice[J]. Nano Lett, 2022, 22(4): 1759-1768.

[本文引用: 3]

ZHOU M, GAO S, ZHANG X L, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions[J]. Bioact Mater, 2020, 6(6): 1676-1688.

[本文引用: 2]

GAO S, ZHOU M, LI Y J, et al. Tetrahedral framework nucleic acids reverse new-onset type 1 diabetes[J]. ACS Appl Mater Interfaces, 2021, 13(43): 50802-50811.

[本文引用: 1]

LI Y J, GAO S, SHI S R, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity[J]. Nanomicro Lett, 2021, 13(1): 86.

[本文引用: 1]

LIU X Y, YU Z Y, WU Y, et al. The immune regulatory effects of tetrahedral framework nucleic acid on human T cells via the mitogen-activated protein kinase pathway[J]. Cell Prolif, 2021, 54(8): e13084.

[本文引用: 3]

ZHONG J, GUO B, XIE J, et al. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4: 15036.

[本文引用: 1]

LI P, FU L, LIAO Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment[J]. Biomaterials, 2021, 278: 121131.

[本文引用: 1]

FU L W, LI P X, ZHU J Y, et al. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ[J]. Bioact Mater, 2022, 9: 411-427.

[本文引用: 1]

YAO Y X, WEN Y T, LI Y J, et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway[J]. Nanoscale, 2021, 13(37): 15598-15610.

[本文引用: 3]

LIN S Y, ZHANG Q, LI S H, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11397-11408.

[本文引用: 1]

ZHAO D, LIU M T, LI J J, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29439-29449.

[本文引用: 3]

GUAN H Q, YANG S L, ZHENG C, et al. DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions[J]. Talanta, 2021, 233: 122543.

[本文引用: 1]