Application and research progress of tetrahedral framework nucleic acids in the field of medicine
XIE Shasha,1, LÜ Yehui,1,2, LIN Jian2,3
1.Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
2.Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
3.Department of Center for Orthopedic Repair and Reconstruction, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 202150, China
Since the first proposal by Seeman in 1982, DNA nanostructures have been gradually improved, and have been widely developed and applied to the field of biomedical fields. In recent years, as a representative of 3D DNA nanostructures, tetrahedral framework nucleic acids (tFNA) has made certain research progress and has good application prospects in frontier fields such as biosensors, tumor therapy, antigen detection, regenerative medicine, with the advantages of their good biocompatibility, editability, high stability and easy preparation. This paper briefly describes the concepts of tFNA, and summarizes the applications and research progress of tFNA in the following fields from the perspective of therapeutic applications: ① Building novel self-assembled complexes to improve the efficacy of free drugs, carrying small RNA molecules to slow down tumor progression, and self-assembled complexes for targeted therapy, etc, as biological vectors and tumor drug delivery. ② Regulating inflammation and immune response, such as reducing the level of inflammatory factors, treating inflammatory diseases, preventing diabetes, and acting as immunomodulators, etc. ③ Enhancing tissue regeneration, such as promoting stem cell proliferation and differentiation, stimulating peripheral nerve regeneration, and facilitating wound repair through angiogenesis. This review summarizes the research progress of tFNA, and looks forward to its application prospects based on the analysis of the shortcomings of existing research, in order to provide reference for further research.
XIE Shasha, LÜ Yehui, LIN Jian. Application and research progress of tetrahedral framework nucleic acids in the field of medicine. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(3): 380-384 doi:10.3969/j.issn.1674-8115.2023.03.015
随着免疫疗法的不断完善,tFNA也为调控免疫细胞功能、提高免疫治疗效果提供了新的解决方案。目前糖尿病的治疗也有免疫耐受的问题,而tFNA可以重建免疫耐受性,预防慢性炎症、减轻胰岛素抵抗。GAO等[17]发现tFNA能够诱导分化调节性免疫细胞并抑制胰腺的辅助T细胞,通过恢复外周免疫耐受保护胰岛素的β-细胞的活性,能有效预防非肥胖1型糖尿病的发生。LI等[18]合成了携带白藜芦醇(resveratrol,RSV)的tFNA,通过抑制辅助性T细胞1(helper T cell 1,Th1)和Th17亚群的活化,促进Th2和调节性T细胞的分化,可有效抑制组织炎症,缓解肥胖小鼠的胰岛素抵抗情况。因此,tFNA有望成为解决胰岛素抵抗、改善胰岛功能的有效手段。自身免疫性疾病是一组对自身抗原失去免疫耐受性的异质性疾病,而tFNA对T细胞具有免疫调节作用,有望成为免疫疗法的新兴手段。在生理条件下,LIU等[19]发现tFNA通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路依赖性方式,选择性调节T细胞介导的适应性免疫。该研究表明,tFNA对刺激性T细胞分泌的γ干扰素(interferon-γ,IFN-γ)具有显著的抑制作用,但却不影响TNF的释放。
3 tFNA在组织再生中的促进作用
已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生[20]。LI等[21]发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化。FU等[22]的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生。上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施。此外,如前文所述,ZHOU等[16]探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能。
The manuscript was drafted and revised by XIE Shasha and LÜ Yehui. The manuscript was reviewed by LIN Jian. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
All authors disclose no relevant conflict of interests.
GOODMAN R P, SCHAAP I A, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication[J]. Science, 2005, 310(5754): 1661-1665.
ZHANG T, CUI W T, TIAN T R, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47115-47126.
ZHANG X L, LIU N X, ZHOU M, et al. The application of tetrahedral framework nucleic acids as a drug carrier in biomedicine fields[J]. Curr Stem Cell Res Ther, 2021, 16(1): 48-56.
YE D K, ZUO X L, FAN C M. DNA nanostructure-based engineering of the biosensing interface for biomolecular detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
SUN Y, LIU Y H, ZHANG B W, et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli)[J]. Bioact Mater, 2021, 6(8): 2281-2290.
ZHANG M, ZHANG X L, TIAN T R, et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis[J]. Bioact Mater, 2022, 8: 368-380.
SONG G Q, DONG H S, MA D H, et al. Tetrahedral framework nucleic acid delivered RNA therapeutics significantly attenuate pancreatic cancer progression via inhibition of CTR1-dependent copper absorption[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46334-46342.
XIE X, SHAO X, MA W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018, 10(12): 5457-5465.
MA W J, ZHAN Y X, ZHANG Y X, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2[J]. Nano Lett, 2019, 19(7): 4505-4517.
ZHANG T, TIAN T R, ZHOU R H, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment[J]. Nat Protoc, 2020, 15(8): 2728-2757.
WANG Y, LI Y J, GAO S, et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice[J]. Nano Lett, 2022, 22(4): 1759-1768.
ZHOU M, GAO S, ZHANG X L, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions[J]. Bioact Mater, 2020, 6(6): 1676-1688.
GAO S, ZHOU M, LI Y J, et al. Tetrahedral framework nucleic acids reverse new-onset type 1 diabetes[J]. ACS Appl Mater Interfaces, 2021, 13(43): 50802-50811.
LI Y J, GAO S, SHI S R, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity[J]. Nanomicro Lett, 2021, 13(1): 86.
LIU X Y, YU Z Y, WU Y, et al. The immune regulatory effects of tetrahedral framework nucleic acid on human T cells via the mitogen-activated protein kinase pathway[J]. Cell Prolif, 2021, 54(8): e13084.
FU L W, LI P X, ZHU J Y, et al. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ[J]. Bioact Mater, 2022, 9: 411-427.
YAO Y X, WEN Y T, LI Y J, et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway[J]. Nanoscale, 2021, 13(37): 15598-15610.
LIN S Y, ZHANG Q, LI S H, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11397-11408.
ZHAO D, LIU M T, LI J J, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29439-29449.
GUAN H Q, YANG S L, ZHENG C, et al. DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions[J]. Talanta, 2021, 233: 122543.
... 已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生[20].LI等[21]发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化.FU等[22]的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生.上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施.此外,如前文所述,ZHOU等[16]探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能. ...
1
... 随着免疫疗法的不断完善,tFNA也为调控免疫细胞功能、提高免疫治疗效果提供了新的解决方案.目前糖尿病的治疗也有免疫耐受的问题,而tFNA可以重建免疫耐受性,预防慢性炎症、减轻胰岛素抵抗.GAO等[17]发现tFNA能够诱导分化调节性免疫细胞并抑制胰腺的辅助T细胞,通过恢复外周免疫耐受保护胰岛素的β-细胞的活性,能有效预防非肥胖1型糖尿病的发生.LI等[18]合成了携带白藜芦醇(resveratrol,RSV)的tFNA,通过抑制辅助性T细胞1(helper T cell 1,Th1)和Th17亚群的活化,促进Th2和调节性T细胞的分化,可有效抑制组织炎症,缓解肥胖小鼠的胰岛素抵抗情况.因此,tFNA有望成为解决胰岛素抵抗、改善胰岛功能的有效手段.自身免疫性疾病是一组对自身抗原失去免疫耐受性的异质性疾病,而tFNA对T细胞具有免疫调节作用,有望成为免疫疗法的新兴手段.在生理条件下,LIU等[19]发现tFNA通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路依赖性方式,选择性调节T细胞介导的适应性免疫.该研究表明,tFNA对刺激性T细胞分泌的γ干扰素(interferon-γ,IFN-γ)具有显著的抑制作用,但却不影响TNF的释放. ...
1
... 随着免疫疗法的不断完善,tFNA也为调控免疫细胞功能、提高免疫治疗效果提供了新的解决方案.目前糖尿病的治疗也有免疫耐受的问题,而tFNA可以重建免疫耐受性,预防慢性炎症、减轻胰岛素抵抗.GAO等[17]发现tFNA能够诱导分化调节性免疫细胞并抑制胰腺的辅助T细胞,通过恢复外周免疫耐受保护胰岛素的β-细胞的活性,能有效预防非肥胖1型糖尿病的发生.LI等[18]合成了携带白藜芦醇(resveratrol,RSV)的tFNA,通过抑制辅助性T细胞1(helper T cell 1,Th1)和Th17亚群的活化,促进Th2和调节性T细胞的分化,可有效抑制组织炎症,缓解肥胖小鼠的胰岛素抵抗情况.因此,tFNA有望成为解决胰岛素抵抗、改善胰岛功能的有效手段.自身免疫性疾病是一组对自身抗原失去免疫耐受性的异质性疾病,而tFNA对T细胞具有免疫调节作用,有望成为免疫疗法的新兴手段.在生理条件下,LIU等[19]发现tFNA通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路依赖性方式,选择性调节T细胞介导的适应性免疫.该研究表明,tFNA对刺激性T细胞分泌的γ干扰素(interferon-γ,IFN-γ)具有显著的抑制作用,但却不影响TNF的释放. ...
3
... 随着免疫疗法的不断完善,tFNA也为调控免疫细胞功能、提高免疫治疗效果提供了新的解决方案.目前糖尿病的治疗也有免疫耐受的问题,而tFNA可以重建免疫耐受性,预防慢性炎症、减轻胰岛素抵抗.GAO等[17]发现tFNA能够诱导分化调节性免疫细胞并抑制胰腺的辅助T细胞,通过恢复外周免疫耐受保护胰岛素的β-细胞的活性,能有效预防非肥胖1型糖尿病的发生.LI等[18]合成了携带白藜芦醇(resveratrol,RSV)的tFNA,通过抑制辅助性T细胞1(helper T cell 1,Th1)和Th17亚群的活化,促进Th2和调节性T细胞的分化,可有效抑制组织炎症,缓解肥胖小鼠的胰岛素抵抗情况.因此,tFNA有望成为解决胰岛素抵抗、改善胰岛功能的有效手段.自身免疫性疾病是一组对自身抗原失去免疫耐受性的异质性疾病,而tFNA对T细胞具有免疫调节作用,有望成为免疫疗法的新兴手段.在生理条件下,LIU等[19]发现tFNA通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路依赖性方式,选择性调节T细胞介导的适应性免疫.该研究表明,tFNA对刺激性T细胞分泌的γ干扰素(interferon-γ,IFN-γ)具有显著的抑制作用,但却不影响TNF的释放. ...
... lack of systematic research on long-term impacts
Treating inflammatory diseases, acting as immunomodulators [15-19]
Regulating inflammation and immune response [15-19]
Most of them are animal experiments, and the ...
... -19]
Most of them are animal experiments, and the ...
1
... 已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生[20].LI等[21]发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化.FU等[22]的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生.上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施.此外,如前文所述,ZHOU等[16]探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能. ...
1
... 已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生[20].LI等[21]发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化.FU等[22]的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生.上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施.此外,如前文所述,ZHOU等[16]探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能. ...
1
... 已有研究表明tFNA能够促进干细胞增殖、分化和迁移,影响组织再生[20].LI等[21]发现添加tFNA的环境更有利于诱导滑膜间充质干细胞(synovial mesenchymal stem cell,SMSC)向软骨组织的分化,证实tFNA能够激活无翅型MMTV整合位点家族(wingless-type MMTV integration site family,Wnt)/β-catenin通路,上调SMSC中胶原和蛋白多糖表达,有效促进SMSC的增殖及软骨分化.FU等[22]的研究表明tFNA通过提升SMSC的增殖和迁移能力,在体外可有效促进SMSC的软骨分化,在体内可增强关节软骨再生.上述两项研究均表明tFNA在影响软骨细胞的分化和增殖方面具有优势,有望成为关节软骨再生的有效措施.此外,如前文所述,ZHOU等[16]探讨了tFNA在牙周炎治疗中的具体应用,该研究也表明tFNA可有效促进干细胞的成骨细胞分化、抑制破骨细胞形成,在牙周组织再生领域也有应用潜能. ...