上海交通大学学报(医学版), 2023, 43(5): 580-591 doi: 10.3969/j.issn.1674-8115.2023.05.008

论著 · 基础研究

孟鲁司特对哮喘中白三烯B4代谢的影响

胡煜,1,2,3, 谢亮1,2,4,5, 邹丹3, 伏洪玲1,2, 娄丽丽1,2, 谢柯祺3, 刘瀚旻,1,2,4,5

1.四川大学华西第二医院小儿呼吸免疫科,成都 610041

2.四川大学华西第二医院肺发育与相关疾病联合实验室,成都 610041

3.电子科技大学医学院附属绵阳医院·绵阳市中心医院儿科,绵阳 621000

4.四川大学华西第二医院出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041

5.四川大学国家卫生健康委员会时间生物学重点实验室,成都 610041

Effect of montelukast on leukotriene B4 metabolism in asthma

HU Yu,1,2,3, XIE Liang1,2,4,5, ZOU Dan3, FU Hongling1,2, LOU Lili1,2, XIE Keqi3, LIU Hanmin,1,2,4,5

1.Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China

2.The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University; West China Institute of Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China

3.Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China

4.Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China

5.NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China

通讯作者: 刘瀚旻,电子信箱:liuhm@scu.edu.cn

编委: 张慧俊

收稿日期: 2023-03-31   接受日期: 2023-01-03  

基金资助: 国家自然科学基金.  U21A20333
四川省中央引导地方科技发展专项项目.  2021ZYD0105
中央高校基本科研业务费专项资金.  SCU2022D022
四川省卫健委普及应用项目.  20PJ254

Corresponding authors: LIU Hanmin, E-mail:liuhm@scu.edu.cn.

Received: 2023-03-31   Accepted: 2023-01-03  

作者简介 About authors

胡 煜(1982—),男,副主任医师,博士;电子信箱:976700544@qq.com。 E-mail:976700544@qq.com

摘要

目的·观察孟鲁司特在哮喘治疗中对白三烯B4(leukotriene B4,LTB4)代谢途径关键分子表达的影响,探讨哮喘的潜在干预靶点。方法·卵清蛋白(ovalbumin,OVA)+Al(OH)3致敏激发小鼠,建立以过敏性气道疾病(allergic airway disease,AAD)为特点的小鼠急性、亚急性和慢性哮喘模型并予孟鲁司特灌胃干预,然后再予OVA激发慢性哮喘模型。无约束全身体积描记仪测定小鼠肺功能,探究气道高反应性(airway hyperresponsiveness,AHR)的变化规律。苏木精-伊红(hematoxylin-eosin,HE)染色观察肺组织嗜酸性粒细胞(eosinophil,EOS)浸润及杯状细胞(goblet cell,GCL)增生情况,观察气道过敏性炎症的病理学特点。ELISA和液相芯片多因子检测试剂盒检测支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)和血清的免疫球蛋白E(immunoglobulin E,IgE)、干扰素γ(interferon γ,IFN-γ)和白细胞介素(interleukin,IL)表达水平,观察2型辅助性T细胞(helper T cell type 2,Th2)炎症情况。RT-qPCR、Western blotting及免疫组织化学检测小鼠LTB4合成限速酶5-脂氧合酶激活蛋白(5-lipoxygenase activating protein,ALOX5AP)和白三烯A4水解酶(leukotriene A4 hydrolase,LTA4H)及LTB4受体1(leukotriene B4 receptor 1,BLT1)基因及蛋白表达,探究LTB4的代谢与哮喘的关系。结果·OVA+Al(OH)3可建立以AAD为特征的小鼠哮喘模型,表现为以增强呼气间歇(enhanced pause,Penh)值升高为肺功能特点的AHR,以气道EOS浸润和GCL增生为病理学特点的嗜酸性炎症和黏液高分泌状态,及以BALF和血清中IgE、IL-4和IL-13升高且IFN-γ、IL-2和IL-12降低为免疫学特点的Th2型炎症反应;孟鲁司特可有效缓解AAD。ALOX5APLTA4HBLT1基因及蛋白在哮喘中表达增强,孟鲁司特始终抑制ALOX5AP表达,但可促进LTA4HBLT1在慢性期的表达。OVA再次激发后,孟鲁司特可使LTA4HBLT1表达增强。结论·孟鲁司特具有缓解哮喘小鼠过敏性炎症的效应,但可刺激LTB4的生成和堆积并以慢性期显著;再次予OVA激发孟鲁司特持续干预的哮喘小鼠可使LTB4与BLT1的表达增强;孟鲁司特可能存在激活LTB4及其受体BLT1进而加重哮喘发作的风险,LTB4代谢限速酶LTA4H及受体BLT1可能是哮喘治疗的潜在靶点。

关键词: 哮喘 ; 5-脂氧合酶激活蛋白 ; 白三烯A4水解酶 ; 白三烯B4受体 ; 孟鲁司特

Abstract

Objective ·To observe the effect of montelukast on the expressions of key genes in LTB4 (leukotriene B4) metabolic pathway in treating asthma and investigate the candidate intervene targets of asthma. Methods ·The acute, subacute, and chronic asthmatic mouse models characterizing by allergic airway disease (AAD) were set up by ovalbumin (OVA) and Al(OH)3 sensitization and challenge and intervened by intragastric administration of montelukast and finally challenged by OVA for chronic asthma model. The pulmonary functions of mice were tested by unconstrained whole body plethysmograph, to quest the change patterns of airway hyperresponsiveness (AHR). The eosinophil (EOS) infiltration and goblet cell (GCL) hyperplasia in mouse lungs were detected by hematoxylin-eosin (HE) staining, to quest the pathologic features of airway allergic inflammation. The levels of immunoglobulin E (IgE), interferon γ (IFN-γ), and interleukin (IL) in bronchoalveolar lavage fluid (BALF) and serum were detected by ELISA and Milliplex kits, to quest the helper T cell type 2 (Th2) inflammation status. The transcription and protein levels of 5-lipoxygenase activating protein (ALOX5AP), leukotriene A4 hydrolase (LTA4H), and leukotriene B4 receptor 1 (BLT1) genes, which encoded the rate-limiting enzymes in LTB4 synthesis pathway, were detected by RT-qPCR, Western blotting and immunohistochemistry (IHC). Results ·The asthmatic mouse model could be set up by OVA and Al (OH)3 and was presented as AHR characterized by increasing enhanced pause (Penh) value, eosinophilic inflammation and high mucous secretion pathologically characterized by airway EOS infiltration and GCL hyperplasia, Th2 inflammation immunologically characterized by the increasing levels of IgE, IL-4, and IL-13 as well as decreasing levels of IFN-γ, IL-2, and IL-12 in BALF and serum. Montelukast could alleviate AAD effectively. The transcription and protein levels of ALOX5AP, LTA4H, and BLT1 genes increased in asthma. Montelukast can inhibit the expression of ALOX5AP gene and promote the expressions of LTB4 and BLT1 genes in asthmatic chronic phase. When challenged by OVA once again, montelukast can induce the significantly high expressions of LTB4 and BLT1 genes. Conclusion ·Montelukast has the effect of relieving allergic inflammation in asthma mice, but it can stimulate the production and accumulation of LTB4 and is significant in chronic phase. When challenged by OVA a second time, LTB4 could be promoted to combine with BLT1 and attend in the pathogenesis of asthma. The results suggested that there was a potential risk of activation of LTB4 by montelukast. The rate-limiting enzyme LTA4H and its receptor BLT1 metabolism may be potential targets for asthma treatment.

Keywords: asthma ; 5-lipoxygenase activating protein (ALOX5AP) ; leukotriene A4 hydrolase (LTA4H) ; leukotriene B4 receptor ; montelukast

PDF (4972KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡煜, 谢亮, 邹丹, 伏洪玲, 娄丽丽, 谢柯祺, 刘瀚旻. 孟鲁司特对哮喘中白三烯B4代谢的影响. 上海交通大学学报(医学版)[J], 2023, 43(5): 580-591 doi:10.3969/j.issn.1674-8115.2023.05.008

HU Yu, XIE Liang, ZOU Dan, FU Hongling, LOU Lili, XIE Keqi, LIU Hanmin. Effect of montelukast on leukotriene B4 metabolism in asthma. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(5): 580-591 doi:10.3969/j.issn.1674-8115.2023.05.008

支气管哮喘是严重威胁人类健康的慢性呼吸系统疾病,全球哮喘患者超过3亿人1。哮喘包括过敏性、肥胖性、运动性和药物性等多种表型,其中过敏性哮喘是哮喘的主要表型,多见特异性体质人群在接触变应原后产生的以咳嗽、胸闷、气紧和呼吸困难为主要表现的临床急症。哮喘的病理学特点为气道嗜酸性炎症和黏液高分泌,并以可逆性气流受阻和气道高反应性(airway hyperresponsiveness,AHR)为主要病理生理学特征。过敏性哮喘的发病机制以免疫学改变为特点,主要表现为变应原刺激特异性机体产生Ⅰ型变态反应,导致1型辅助性T细胞(helper T cell type 1,Th1)/Th2比例失衡,Th2增殖活跃并诱导产生大量细胞因子、炎症介质和免疫球蛋白E(immunoglobulin E,IgE),从而促使炎症细胞增殖活化,最终诱发呼吸系统症状。炎症介质在哮喘发病中起关键作用,但其种类繁多且具体作用机制尚不完全清楚。因此,有必要深入探究炎症介质与哮喘发病的潜在联系,拓展其临床治疗思路。

白三烯(leukotriene,LT)是重要的炎症介质,其发现史可追溯到1930年代Feldberg和Kellaway在猴和犬肺部观察到的“慢反应物质”,在1970年代由Samuelsson正式命名并明确其化学结构及代谢途径。LT在生理状态下表达极低,但可在过敏性炎症反应中大量产生2。LT的产生源于花生四烯酸(arachidonic acid,AA),AA经5-脂氧合酶激活蛋白(5-lipoxygenase activating protein,ALOX5AP/FLAP)催化产生极不稳定的LTA4,LTA4迅速经LTA4水解酶(leukotriene A4 hydrolase,LTA4H)催化为LTB4或经LTC4合成酶(leukotriene C4 synthetase,LTC4S)催化为LTC4,LTC4及其进一步催化产生的LTD4和LTE4统称为半胱氨酰白三烯(cysteinyl leukotriene,CysLT)。LTB4和CysLT分别通过与特定受体结合发挥生物学效应。孟鲁司特为CysLT受体1(CysLT1R)特异性拮抗剂,广泛用于哮喘治疗,但部分患者在使用后存在症状控制欠佳、停药后易反复等现象3,且使用疗程无确切依据。故推测哮喘患者在拮抗CysLT1R后并未完全阻断LT的致病效应,LT可能存在通过反馈性堆积或与其他受体结合的形式继续发挥作用,提示仍有必要继续寻找LT代谢通路中潜在的干预靶点。

LTB4是一种促炎介质,通过与其受体(leukotriene B4 receptor,BLT)结合实现炎症细胞的招募、激活和存活。BLT包括BLT1和BLT2两种受体,其中BLT1是LTB4特异的高亲和力受体。研究发现,哮喘患者支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中的嗜酸性粒细胞(eosinophil,EOS)显著增多并分泌大量LTB4,且LTB4的水平与哮喘严重程度正相关。BLT1主要表达于EOS、中性粒细胞(neutrophil,NEU)、巨噬细胞和单核细胞等表面,而EOS上BLT1的表达有助于IL-13和过敏性气道炎症的产生,且孟鲁司特不能阻断LTB4与其受体BLT1的结合,这提示LTB4可能通过与BLT1的结合参与哮喘发病。故我们假设LTB4在哮喘可能存在如下效应:孟鲁司特阻断CysLT1R并反馈性抑制LTA4合成LTC4,且LTA4会产生堆积并继续反馈抑制其上游底物产生,过敏性炎症反应减弱;因LTB4合成通路未受影响,稳定性差的LTA4可通过LTA4H转化为较稳定的LTB4并与BLT1结合(LTB4-BLT1通路),继续参与炎症反应;若CysLT1R长期被抑制,则LTA4将主要代谢为LTB4,LTB4可能产生堆积或LTB4-BLT1通路开放增加,当LTB4堆积到阈值或机体再次被过敏原等激发后,LTB4-BLT1通路可迅速大量开放,进而诱发哮喘等过敏性炎症反应加重。本研究通过模拟以过敏性气道炎症(allergic airway disease,AAD)为特点的小鼠哮喘模型,并给予孟鲁司特治疗干预,观察其在哮喘治疗中对LTB4代谢途径相关分子表达的影响,探究LTB4在哮喘治疗中的潜在前景。

1 材料与方法

1.1 材料

1.1.1 实验动物

Balb/c雌性小鼠[体质量为(17.88±1.41) g],购于成都达硕动物实验公司,2月龄,SPF级。动物饲养于四川大学华西第二医院,实验动物使用许可证号为:医学科研2022伦审批第(039)号。饲养环境光照周期12 h交替,小鼠自由饮食。

1.1.2 主要试剂和仪器

卵清蛋白(ovalbumin,OVA;#A5503-5G)购自美国Sigma公司,氯化乙酰甲胆碱(methacholine chloride,Mch;#M0073)购自日本东京化成工业株式会社,氢氧化铝[Al(OH)3;#21645-51-2]购自中国上海生化科技股份有限公司,孟鲁司特钠(#685828-5G)购自美国Sigma公司,IgE ELISA试剂盒(#BH1395)购自中国上海博湖生物科技有限公司,液相芯片多因子检测试剂盒(# HCYTOMAG-60K)购自德国Merck Millipore公司,Trizol试剂盒(#15596-018)购自中国北京索莱宝科技有限公司。压缩式雾化泵吸乳器(#NE-C900)购自日本OMRON公司,无约束全身体积描记仪(#WBP-8M)购自中国上海塔望智能科技有限公司。

实时荧光定量聚合酶链反应(real-time quantitative polymerase chain reaction,RT-qPCR)所用引物购自中国上海伯豪生物科技有限公司。Western blotting及免疫组化所用抗体:兔抗小鼠单克隆ALOX5AP抗体(#sab1300958)购自美国Sigma公司,兔抗小鼠单克隆LTA4H抗体(#ab133512)购自美国Abcam公司,兔抗小鼠单克隆BLT1抗体(#oabf 01059)购自美国Avivasysbio公司,山羊抗兔IgG(# A0208)购自中国上海碧云天生物技术有限公司。

1.2 实验方法

1.2.1 过敏性哮喘小鼠模型建立

参照NAILS4和LOCKE5的方法建立以AAD为特点的小鼠哮喘模型(图1)。① 动物分组。Balb/c雌性小鼠104只,随机分为空白对照组(Control)(n=32)、哮喘组(AAD)(n=32)、孟鲁司特干预组(AAD+montelukast)(n=32)和孟鲁司特干预对照组(AAD+montelukast-NC)(n=8)。② 致敏激发。给予AAD、AAD+montelukast和AAD+montelukast-NC组腹腔注射40 μg OVA和2 mg Al(OH)3混合液0.5 mL致敏,然后第14~17天(急性模型)、第14~20天(亚急性模型)给予3%OVA雾化,每日1次;第21~62天(慢性模型)给予3%OVA雾化,每周3次。Control组用0.5 mL生理盐水和2 mg Al(OH)3腹腔注射致敏,给予生理盐水雾化。雾化方式为压缩雾化器连接到通风塑料盒(50 cm×30 cm×20 cm),每次雾化30 min。③ 药物干预。AAD+montelukast组每日给予孟鲁司特钠溶液灌胃(3 mg/kg)至第90天,Control和AAD组给予等量生理盐水灌胃,各组分别于第18、21、63天取样本。AAD+montelukast-NC组于第63天前的干预方式同AAD+montelukast组,从第63天起改为生理盐水灌胃至第90天。每组小鼠每次采集8个样本量。④ 再次激发。各组分别剩余的小鼠于第91~93天再次给予3%OVA雾化激发(Control组给予生理盐水雾化),连续雾化3 d后于第94天取样本。

图1

图1   哮喘小鼠模型建立

Note: AAD was induced by intraperitoneal sensitization of Balb/c mice with 40 μg grade V OVA and 2 mg aluminum hydroxide in saline. Sensitization was delivered on Day 0 and 14 (acute and subacute models) or on Day 0, 7 and 14 (chronic model). Mice were then challenged by nebulization of 3% OVA in saline for 30 min on four consecutive days (acute), seven consecutive days (subacute), or 3 d/week for 6 weeks (chronic). Control mice were sensitized with 2 mg of aluminum hydroxide in 0.5 mL and challenged by nebulized saline. Treated AAD mice to montelukast by means of gavage every night on challenging days or Day 63 to 90 (chronic). Control mice were treated to gavage saline. AAD mice were challenged by nebulization of 3% OVA in saline for 30 min on three consecutive days by Day 91 to 93.

Fig 1   Setup of mice model with asthma


1.2.2 肺功能检测

小鼠末次雾化后24 h使用无约束全身体积描记法测定气道反应性。将小鼠置于密闭体积描记器内,打开偏流通气30 min,待其适应环境并安静后连接传感器获取基础数据5 min。依次给予0、3.125、6.25、12.5、25、50和100 mg/mL的Mch气溶胶雾化激发5 min后连续记录呼吸道阻力参数增强呼气间歇(enhanced pause,Penh)值5 min。

1.2.3 IgE和炎症介质检测

1%戊巴比妥腹腔注射麻醉小鼠,从尾静脉采血取样,分离血清-80 ℃保存。处死小鼠,将预冷的PBS(0.5 mL)灌洗右肺3次,收集BALF离心,上清液-80 ℃保存。将血清和BALF上清液用ELISA试剂盒检测IgE水平,液相芯片多因子检测试剂盒检测IFN-γ、IL-2、IL-4、IL-12水平。

1.2.4 苏木精-伊红(hematoxylin-eosin,HE)染色

采集BALF后,将左肺组织固定在10%的中性缓冲福尔马林中48 h后嵌入石蜡固定。将石蜡包埋的切片(4 μm厚,每个样本3片)用HE染色来评估肺部嗜酸性炎症水平。肺部炎症评分采用盲法6,炎症分级:0级(未观察到EOS),1级(偶尔观察到EOS),2级(支气管被1~3层EOS包围),3级(支气管或血管被4~5层EOS包围),4级(大多数支气管或血管被5层以上的EOS包围)。使用Padrid等人描述的方法评估杯状细胞(goblet cell,GCL)增生情况,根据五分制评分系统7(0~4级)对病理变化进行量化。该评分系统基于上皮细胞的百分比:0级(无GCL),1级(<25%),2级(25%~50%),3级 (51%~75%),和4级(>75%)。每张玻片计数8个支气管被,计算平均EOS浸润和GCL增生评分。

1.2.5 RT-qPCR

使用Trizol试剂盒提取组织总RNA,使用逆转录试剂盒逆转录为互补DNA。合成引物见表1,实时PCR用All-in-one™qPCR Mix在CFX96™实时系统中进行。根据甘油醛3-磷酸脱氢酶水平进行基因表达标准化。2-ΔΔCT为目的基因在实验组和对照组的表达比例。计算公式为:实验组ΔΔCT=实验ΔCT-对照ΔCT,其中ΔCT=靶基CT-对照基因CT

表1   引物列表

Tab 1  List of primers

Primer NameDirectionSequence (5′→3′)
ALOX5APForwardTGTCGGCTATCTGGGAGAGAGA
ALOX5APReverseATCCGCTTGCCGAAGATGTA
LTA4HForwardTTGATTGGAACACCTGGCTCTA
LTA4HReverseTGTCAGAGTCACGTCGTAATTGG
BLT1ForwardGGCACTAAGACAGATTCAAGGATT
BLT1ReverseACATGCCACCAGGAGAAGAAG
ActinForwardTGGCTCCTAGCACCATGAAGA
ActinReverseGCCACCGATCCACACAGAGT

新窗口打开| 下载CSV


1.2.6 Western blotting和免疫组织化学

使用免疫沉淀分析缓冲液提取组织中总蛋白并定量,经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离的蛋白转移到聚偏氟乙烯膜上。用含5%脱脂奶粉的tris缓冲盐水Tween-20缓冲液封闭膜1 h,然后在4 ℃下分别用兔抗小鼠单克隆抗体ALOX5AP(φ=1∶50)、LTA4H(φ=1∶50)和BLT1(φ=1∶50)封闭过夜后用生物素标记的山羊抗兔IgG(φ=1∶2 000)室温孵育1 h。最后使用增强化学发光试剂对膜上的蛋白质进行可视化后,用Gene Tools系统对条带强度进行量化,以靶蛋白带强度与β-肌动蛋白的比值计算蛋白表达相对量。

将石蜡包埋的小鼠左肺组织切片用正常山羊血清工作液室温封闭20 min,分别用兔抗小鼠单克隆抗体ALOX5AP(φ=1∶100)、LTA4H(φ=1∶100)和BLT1(φ=1∶100)作为检测蛋白过夜。然后切片再用生物素标记的山羊抗兔免疫球蛋白G(φ=1∶1000)孵育30 min,在链霉亲和素-生物素复合物中37 °C孵育 30 min。随后用二氨基联苯胺工作液孵育切片6 min,用苏木精反染30 s,梯度乙醇和无水乙醇分别脱水2 min。最后用二甲苯浸泡2次,每次5 min,中性树脂封片、镜检,细胞质呈棕黄色为阳性。切片采用Olympus细胞感觉统计软件进行计数,阳性信号用平均集成光密度(integrated optical density,IOD)值表示,平均IOD值=IOD值/面积(400×视野面积)。

1.3 统计学分析

采用SPSS 21.0软件进行实验数据分析。经过正态分布和方差齐性检验,定量资料用x±s表示。方差齐的正态分布数据使用非配对t检验进行组间比较,方差不齐的正态分布数据则使用韦尔奇t检验。重复测量方差分析用于比较不同时间点的数据。多组之间的数据用方差分析,然后用Tukey多重比较检验。不符合正态分布的数据采用秩和检验进行组间比较。P<0.05为差异具有统计学意义。

2 结果

2.1 OVA+AlOH3 致敏激发小鼠构建以AAD为特征的哮喘模型

Penh值是反映AHR的敏感指标,AHR是哮喘主要的病理生理学特点。通过模拟小鼠哮喘模型发现,随着Mch激发浓度的升高,Penh值也相应增加(图2A~C)。与Control组相比,当Mch激发浓度为25 mg/mL时,AAD组Penh值在急性、亚急性和慢性期分别增加1.42、1.43和1.58倍(图2D),结果表明OVA和Al(OH)3可诱导明显的AHR。

图2

图2   小鼠肺功能Penh

Note: A-C. The Penh values of acute (A), subacute (B) and chronic (C) models of control and AAD mice (n=8). D. The Penh values of each model of control and AAD mice at the concentration of Mch is 25 mg/mL (n=8). P=0.000.

Fig 2   Penh values of different mice groups


EOS浸润和GLC增生是哮喘在肺组织典型的病理学表现。HE染色显示:与Control组相比,AAD组气道炎症加重(图3A),EOS浸润评分在急性、亚急性和慢性期分别增加2.53、17.44和11.75倍(图3B),GCL评分在急性期增加不明显,但在亚急性和慢性期分别增加1.47和10.88倍(图3C)。结果表明小鼠气道存在嗜酸性炎症和黏液高分泌状态。

图3

图3   小鼠肺组织HE染色及评分

Note: A. The HE staining of acute, subacute and chronic models of control and AAD mice lung samples (×400). B. The EOS scores of control and AAD mice lung samples (n=8). C. The GCL scores of control and AAD mice lung samples (n=8). P=0.001, P=0.000, P=0.003.

Fig 3   HE staining and scores of mice lung samples


Th1/Th2失衡所致的Th2功能增强是哮喘发病的免疫学特点。ELISA检测显示:与Control组相比,AAD组BALF和血清中的IgE在所有模型的表达均增强(图4A),提示存在过敏反应。液相芯片多因子检测显示:在BALF和血清中,与Control组相比,AAD组IFN-γ在亚急性和慢性期表达均下降(图4B);Th1类细胞因子(IL-2和IL-12)的表达以减弱为主(图4C/D),而Th2类细胞因子(IL-4和IL-13)的表达以增强为主(图4E/F)。结果表明成功诱导了Th2功能亢进的过敏性炎症反应。

图4

图4   小鼠BALF及血清IgE和细胞因子表达

Note: A-F. The expression levels of IgE (A), IFN-γ (B), IL-2 (C), IL-12 (D), IL-4 (E) and IL-13 (F) in BALF and serum of control and AAD mice (n=4). P=0.000, P=0.004, P=0.002, P=0.007. P=0.001, P=0.006.

Fig 4   Expression levels of IgE and cytokines in BALF and serum of mice


2.2 孟鲁司特可抑制哮喘小鼠ALOX5AP并增强LTA4HBLT1的表达

LTB4代谢调节的关键分子包括ALOX5AP、LTA4H和BLT1,它们分别发挥限速酶和受体功能调控的作用。RT-qPCR和免疫组织化学显示:与AAD组相比,AAD+montelukast组ALOX5AP mRNA在亚急性和慢性期的表达分别下降60.2%和58.1%(图5B),蛋白染色变浅(图5A),IOD值分别下降47.3%和36.5%(图5C),结果表明哮喘可增强ALOX5AP的表达而孟鲁司特则对其产生抑制效应。LTA4H和BLT1在慢性期的变化趋势相似,与AAD组相比,AAD+ montelukast组LTA4H mRNA表达上升19.8%(图6B),蛋白染色变深(图6A),IOD值上升22.3%(图6C);同样,BLT1 mRNA表达上升38.6%(图7B),蛋白染色变深(图7A),IOD值上升16.5%(图7C);结果表明孟鲁司特在用于长期控制哮喘时可增加LTB4的产生及其受体的表达。

图5

图5   ALOX5AP 基因及蛋白表达

Note: A. Immunohistochemical staining of ALOX5AP protein of control, AAD and AAD+ montelukast mice lung samples (×400). B. RT-qPCR transcription levels of ALOX5AP gene (n=4). C. IOD values of ALOX5AP protein in immunohistochemical staining (n=8). P=0.001, P=0.000, P=0.005.

Fig 5   Transcription and protein levels of ALOX5AP gene


图6

图6   LTA4H 基因及蛋白表达

Note: A. Immunohistochemical staining of LTA4H protein of control, AAD and AAD+ montelukast mice lung samples (×400). B. RT-qPCR transcription levels of LTA4H gene (n=4). C. IOD values of LTA4H protein in immunohistochemical staining (n=8). P=0.009, P=0.000, P=0.003.

Fig 6   Transcription and protein levels of LTA4H gene


图7

图7   BLT1 基因及蛋白表达

Note: A. Immunohistochemical staining of BLT1 protein of control, AAD and AAD+montelukast mice lung samples (×400). B. RT-qPCR transcription levels of BLT1 gene (n=4). C.IOD values of BLT1 protein in immunohistochemical staining (n=8). P=0.000, P=0.003.

Fig 7   Transcription and protein levels of BLT1 gene


2.3 OVA再激发哮喘小鼠后孟鲁司特可较长时间抑制ALOX5AP表达并对促进LTA4HBLT1的表达具有时效性

小鼠完成慢性期哮喘建模,继续给予孟鲁司特灌胃4周后,给予OVA再次雾化激发。RT-qPCR、免疫组织化学和Western blotting显示(图8A~C):与AAD组相比,AAD+montelukast组ALOX5AP mRNA表达下降39.2%,蛋白染色变浅,IOD值下降50.4%,蛋白电泳条带曝光度变浅,Ratio值下降64.5%,结果显示在OVA再激发后的哮喘小鼠中,孟鲁司特对ALOX5AP同样存在抑制作用且作用持续时间较长;与AAD组相比,AAD+montelukast组LTA4H mRNA表达上升18.1%,蛋白染色变深,IOD值上升9.8%,蛋白电泳条带曝光度变深,Ratio值上升113.4%,同样,LTA4H mRNA表达上升33.4%,蛋白染色变深,IOD值上升25.7%,蛋白电泳条带曝光度变深,Ratio值上升98.3%;与AAD+montelukast组相比,AAD+ montelukast-NC组LTA4HBLT1的基因和蛋白的表达均有下降。结果显示OVA再激发后,孟鲁司特可通过反馈性抑制ALOX5AP的表达而减轻炎症反应,但仍具有促进LTA4H和BLT1表达的效应,且孟鲁司特对LTA4H和BLT1促表达效应可在停药后消失。

图8

图8   OVA再次激发哮喘小鼠后 ALOX5APLTA4HBLT1 基因及蛋白表达

Note: A. RT-qPCR transcription levels of ALOX5AP, LTA4H and BLT1 gene of control, AAD, AAD+montelukast and AAD+montelukast-NC mice (n=4). B. Immunohistochemical staining of ALOX5AP, LTA4H and BLT1 protein lung samples (×400) and the IOD values of each protein in immunohistochemical staining (n=8). C. Western blotting electrophoresis bands of ALOX5AP, LTA4H and BLT1 protein and the ratio values of each protein (n=4). P=0.000, P=0.007, P=0.011, P=0.012, P=0.009, P=0.017.

Fig 8   Transcription and protein levels of ALOX5AP, LTA4H and BLT1 genes after re-challenged by OVA in asthma mice models


3 讨论

LT是由肥大细胞(mast cells,MC)、EOS、巨噬细胞、血小板和血管平滑肌细胞等多种细胞合成的二十烷类脂性化合物8。LT的产生始于细胞质膜,生理状态下产生极少,变应原等外界刺激可诱导其大量合成和释放。LTs的产生途径包括膜磷脂在磷脂酶A2(phospholipase,PLA2)的作用下转化为AA并在AOLX5AP的催化下合成为极不稳定的LTA4,LTA4分别经LTC4S和LTA4H两个通路的限速酶转化为LTC4(CysLT)和LTB4并产生效应8

许多研究表明LT是促使过敏性哮喘发病的重要炎症介质,可诱导炎症细胞向气道趋化聚集,促进支气管收缩、黏液分泌、气道血管渗漏增加、黏膜水肿加剧、GCL增多、纤毛清除功能减弱、气道平滑肌和上皮细胞增殖、肺间质胶原增多等病理过程9。我们在OVA诱导的小鼠AAD模型中观察到当小鼠肺LT代谢的AOLX5AP基因及蛋白表达增加时,其肺功能Penh值增加,气道阻力增加,AHR增强;同时,肺组织出现EOS浸润、GCL增生为特点的嗜酸性气道炎症和黏液高分泌的病理学现象,且与AOLX5AP基因表达水平正相关,提示LT参与了过敏性哮喘的发病10。这和LOCKE5等诱导的小鼠AAD模型病理表现相似。为进一步验证哮喘模型的免疫学改变,本研究观察到在AAD小鼠的血清和BALF中IgE升高及IFN-γ降低,提示存在过敏性炎症;同时检测到Th1型细胞因子(IL-2、IL-12)的降低和Th2型细胞因子(IL-4、IL-13)的升高与AOLX5AP基因mRNA和蛋白的表达正相关。这同已有研究发现LTB4与BLT1结合后可诱导Th2细胞产生IL-1311,LTD4和LTE4可诱导2型固有淋巴样细胞产生IL-5、IL-13和IL-412以及THIVIERGE发现IL-4和IL-13可上调人外周血单核细胞CysLT1R的表达和功能等13结果一致。本研究结果提示LT参与了OVA诱导的以Th2型细胞因子增高和气道嗜酸性炎症为特点的过敏性哮喘反应。

研究证实孟鲁司特有助于缓解哮喘患者支气管痉挛和抑制气道黏液分泌,减少炎性细胞渗出和介质产生,减轻AHR和逆转部分气道重构14。本研究显示孟鲁司特可明显改善哮喘小鼠肺功能,其Penh值和对照组无差异,推测其原因可能为小鼠呼吸道炎症反应被控制后AHR明显缓解。我们从肺组织切片中观察到持续给予哮喘小鼠孟鲁司特可使其肺部EOS浸润、气道黏液高分泌的表现显著减轻,这与DEBELLEIX等15研究发现的孟鲁司特可预防和逆转OVA诱导的哮喘小鼠气道重塑及WANG等16发现孟鲁司特可减轻哮喘小鼠AHR的结论一致,进一步证实孟鲁司特在本模型中可显著减轻肺部嗜酸性炎症病变。本研究发现孟鲁司特可使哮喘小鼠血清及BALF中的IgE和炎症介质表达趋于正常,与对照组无显著差异,这同SUN等17研究观察到孟鲁司特可降低咳嗽变异性哮喘患儿血清IL-6水平并改善临床症状,证实其可比较理想地控制气道过敏性炎症的结论类似。同时,IgE的表达在血清及BALF中明显下调,证实孟鲁司特通过有效阻断CysLT与CysLT1R的结合从而抑制MC等细胞的脱颗粒释放炎症介质的现象,进而减轻过敏性炎症反应18-19

我们进一步探讨了LTB4代谢中关键分子在孟鲁司特干预下的表达变化。ALOX5AP基因编码的蛋白产物在同5-脂氧合酶(5-lipoxygenase,5-LOX)一起催化AA转化为LTA4的过程中发挥限速酶的作用20。我们观察到过敏原刺激后ALOX5AP表达显著增强,提示有大量AA通过ALOX5AP和5-LOX的催化合成LTA4H。这一现象也被相关研究发现,如脂多糖可降低胸静态顺应性而加重肺水肿、增加NEU浸润和PLA2G5(+/+)小鼠的中性粒细胞髓过氧化物酶活性从而导致肺损伤21;分泌型PLA2主要负责催化膜磷脂转化为AA,其在炎症性疾病中表达增加;胞浆PLA2在肺组织参加Ⅰ型超敏反应,可诱导LT产生而增强过敏性哮喘22,其抑制剂可减少过敏原攻击的哮喘反应如支气管收缩和AHR等23;在人类哮喘中分泌型PLA2有助于AA释放24;在OVA诱导的哮喘模型中,胞浆PLA2基因敲除的小鼠肺损伤程度较低25。另有研究发现5-LOX抑制剂可减轻哮喘的发生26。同时我们采用孟鲁司特拮抗CysLT1R后发现ALOX5AP的表达也明显下调,分析其原因可能是CysLT1R被阻断后CysLT不能及时结合受体而产生堆积现象,进而反馈性地抑制了上游底物LTA4和AA的生成,ALOX5AP的表达下降。故可推测CysLT1R是CysLT的主要效应受体,其阻断剂孟鲁司特可抑制CysLT大部分病理效应。

研究27发现,LTB4合成代谢中的关键分子LTA4H和BLT1在过敏性疾病中起重要作用。本研究观察到它们在哮喘小鼠肺中表达增强,提示LTs可经此通路产生效应。LTA4在LTA4H的催化下转变为LTB4。研究表明,哮喘患者BALF中的EOS能表达大量LTA4H并催化产生LTB4,且EOS来源的LTB4与哮喘严重程度有关28;LTB4被认为是一种促炎介质,负责白细胞的招募、激活和存活,包括EOS和NEU29。有研究发现,在哮喘及过敏性气道炎症患者或动物模型的痰、呼出气冷凝液30、BALF31、血浆32和尿液33中均检测到LTB4水平升高,故推测我们在研究中给予小鼠OVA激发可促进LTA4H催化LTA4转化为LTB4,并参与气道嗜酸性炎症反应。BLT1主要表达于EOS、NEU、树突状细胞(dendritic cell,DC)、巨噬细胞和单核细胞表面,我们发现BLT1基因和蛋白在慢性期表达显著增强,这与在病理切片中观察到的EOS等炎症细胞渗出现象一致,提示LTB4和BLT1结合后可促进气道炎症细胞趋化。另有研究在敲除小鼠BLT1基因可使其对OVA诱导的AHR具有抵抗力,并显示出淋巴细胞、EOS和DC在肺部聚集减少的迹象34;对哮喘患者使用BLT1受体拮抗剂LY293111的临床试验表明它可导致BALF中NEU等炎症细胞数量减少35。这些结果均提示LTB4-BLT1通路是哮喘的重要致病因素。

给予孟鲁司特干预后,LTA4H和BLT1的表达功能进一步增强,推测此时当LTC4的下游通路被阻断后,反馈性抑制LTA4的生成;这可解释我们观察到ALOX5AP表达下降的现象。但LTA4的代谢通路并未完全阻断,可在LTA4H的催化下产生LTB4并出现堆积或激活BLT1继续发挥致病效应。但此时在病理切片中并未观察到大量EOS渗出或GCL增生,推测可能为CysLT1R被阻断后,Th2型炎症介质生成减少和对炎症细胞的刺激功能减弱所致,提示炎症细胞存在多条激活路径36。孟鲁司特对BLT1无拮抗效应37,故间接促进了LTB4的生成和与BLT1的结合。当OVA再次激发哮喘小鼠后,炎症反应被启动,ALOX5AP表达增强,LTA4生成增加。若未将CysLT1R阻断,则CysLT将大量产生并加重炎症反应,但在孟鲁司特继续干预的情况下,LTA4的下游途径以合成LTB4为主,故再激发后LTA4H和BLT1的表达活性会增强。这和本研究中观察到的现象一致,提示孟鲁司特对LTB4的促进存在长期效应,并有在机体再次受到变应原激发后进一步加重炎症反应的可能。

综上所述,我们在研究中通过孟鲁司特干预哮喘小鼠模型发现其具有缓解小鼠AHR、嗜酸性气道炎症和Ⅰ型超敏反应等作用,同时它可促进LTA4HBLT1基因和蛋白表达。进一步证实LT参与了小鼠过敏性哮喘的发病过程且孟鲁司特可有效缓解气道过敏性炎症。孟鲁司特可刺激哮喘小鼠肺LTB4生成并产生堆积现象,当小鼠再次受到变应原激发后,堆积的LTB4可通过LTB4-BLT1通路的开放参与哮喘发病。提示孟鲁司特可能存在激活LTB4而诱发哮喘的潜在风险,LTB4代谢限速酶LTA4H及受体BLT1可能是哮喘治疗的潜在干预靶点。

作者贡献声明

胡煜、刘瀚旻参与了实验设计以及论文的写作和修改。胡煜负责实验操作和数据统计。谢亮、邹丹、伏洪玲、娄丽丽、谢柯祺协助完成实验。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by HU Yu and LIU Hanmin. The manuscript was drafted and revised by HU Yu and LIU Hanmin. HU Yu performed the experiments and analyzed the data. XIE Liang, ZOU Dan, FU Hongling, LOU Lili, and XIE Keqi assisted in completing the experiments. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

JOHNSON C C, CHANDRAN A, HAVSTAD S, et al. US childhood asthma incidence rate patterns from the ECHO consortium to identify high-risk groups for primary prevention[J]. JAMA Pediatr, 2021, 175(9): 919-927.

[本文引用: 1]

MESHRAM D, BHARDWAJ K, RATHOD C, et al. The role of leukotrienes inhibitors in the management of chronic inflammatory diseases[J]. Recent Pat Inflamm Allergy Drug Discov, 2020, 14(1): 15-31.

[本文引用: 1]

YAMAMOTO T, MIYATA J, ARITA M, et al. Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma[J]. Respir Investig, 2019, 57(6): 534-543.

[本文引用: 1]

NIALS A T, UDDIN S. Mouse models of allergic asthma: acute and chronic allergen challenge[J]. Dis Model Mech, 2008, 1(4/5): 213-220.

[本文引用: 1]

LOCKE N R, ROYCE S G, WAINEWRIGHT J S, et al. Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease[J]. Am J Respir Cell Mol Biol, 2007, 36(5): 625-632.

[本文引用: 2]

PADRID P, SNOOK S, FINUCANE T, et al. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats[J]. Am J Respir Crit Care Med, 1995, 151(1): 184-193.

[本文引用: 1]

CHO K S, PARK M K, KANG S A, et al. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma[J]. Mediators Inflamm, 2014, 2014: 436476.

[本文引用: 1]

MIYATA J, FUKUNAGA K, KAWASHIMA Y, et al. Cysteinyl leukotriene metabolism of human eosinophils in allergic disease[J]. Allergol Int, 2020, 69(1): 28-34.

[本文引用: 2]

BRUNO F, SPAZIANO G, LIPARULO A, et al. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma[J]. Eur J Med Chem, 2018, 153: 65-72.

[本文引用: 1]

LECHNER A, HENKEL F D R, HARTUNG F, et al. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma[J]. J Allergy Clin Immunol, 2022, 149(6): 2078-2090.

[本文引用: 1]

RO M, LEE A J, KIM J H. 5-/ 12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development[J]. Allergy, 2018, 73(2): 350-360.

[本文引用: 1]

DOHERTY T A, KHORRAM N, LUND S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production[J]. J Allergy Clin Immunol, 2013, 132(1): 205-213.

[本文引用: 1]

THIVIERGE M, STANKOVÁ J, ROLA-PLESZCZYNSKI M. IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages[J]. J Immunol, 2001, 167(5): 2855-2860.

[本文引用: 1]

ZHOU X J, QIN Z, LU J, et al. Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: a systematic review and meta-analysis[J]. Chin Med J, 2021, 134(24): 2954-2961.

[本文引用: 1]

DEBELLEIX S, SIAO-HIM FA V, BEGUERET H, et al. Montelukast reverses airway remodeling in actively sensitized young mice[J]. Pediatr Pulmonol, 2018, 53(6): 701-709.

[本文引用: 1]

WANG W L, LUO X M, ZHANG Q, et al. Bifidobacterium infantis relieves allergic asthma in mice by regulating Th1/Th2[J]. Med Sci Monit, 2020, 26: e920583.

[本文引用: 1]

SUN W, LIU H Y. Montelukast and budesonide for childhood cough variant asthma[J]. J Coll Physicians Surg Pak, 2019, 29(4): 345-348.

[本文引用: 1]

ELIEH ALI KOMI D, BJERMER L. Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights[J]. Clin Rev Allergy Immunol, 2019, 56(2): 234-247.

[本文引用: 1]

BRIGHTLING C E, BRUSSELLE G, ALTMAN P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma[J]. Allergy, 2020, 75(4): 761-768.

[本文引用: 1]

SCHEXNAYDRE E E, GERSTMEIER J, GARSCHA U, et al. A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 543-551.

[本文引用: 1]

MUÑOZ N M, MELITON A Y, MELITON L N, et al. Secretory group V phospholipase A2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(6): L879-L887.

[本文引用: 1]

LESLIE C C. Cytosolic phospholipase A₂: physiological function and role in disease[J]. J Lipid Res, 2015, 56(8): 1386-1402.

[本文引用: 1]

SOKOLOWSKA M, STEFANSKA J, WODZ-NASKIEWICZ K, et al. Cytosolic phospholipase A2 group IVA is overexpressed in patients with persistent asthma and regulated by the promoter microsatellites[J]. J Allergy Clin Immunol, 2010, 125(6): 1393-1395.

[本文引用: 1]

GRANATA F, STAIANO R I, LOFFREDO S, et al. The role of mast cell-derived secreted phospholipases A2 in respiratory allergy[J]. Biochimie, 2010, 92(6): 588-593.

[本文引用: 1]

TOUQUI L. Antisense inhibition of phospholipase A2: a new approach for already tested therapeutic targets for the treatment of sepsis[J]. Crit Care Med, 2012, 40(7): 2250-2251.

[本文引用: 1]

ZAMAN K, HANIGAN M H, SMITH A, et al. Endogenous S-nitrosoglutathione modifies 5-lipoxygenase expression in airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2006, 34(4): 387-393.

[本文引用: 1]

KOGA T, SASAKI F, SAEKI K, et al. Expression of leukotriene B4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation[J]. Cell Mol Immunol, 2021, 18(6): 1437-1449.

[本文引用: 1]

PAL K, FENG X, STEINKE J W, et al. Leukotriene A4 hydrolase activation and leukotriene B4 production by eosinophils in severe asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(4): 413-419.

[本文引用: 1]

HE R, CHEN Y, CAI Q. The role of the LTB4-BLT1 axis in health and disease[J]. Pharmacol Res, 2020, 158: 104857.

[本文引用: 1]

UCHIDA Y, SOMA T, NAKAGOME K, et al. Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma[J]. Ann Allergy Asthma Immunol, 2019, 123(1): 81-88.e1.

[本文引用: 1]

PREEZ S D, RAIDAL S L, DORAN G S, et al. Exhaled breath condensate hydrogen peroxide, pH and leukotriene B4 are associated with lower airway inflammation and airway cytology in the horse[J]. Equine Vet J, 2019, 51(1): 24-32.

[本文引用: 1]

STAPLETON R D, SURATT B T, NEFF M J, et al. Bronchoalveolar fluid and plasma inflammatory biomarkers in contemporary ARDS patients[J]. Biomarkers, 2019, 24(4): 352-359.

[本文引用: 1]

BERRY K A, BORGEAT P, GOSSELIN J, et al. Urinary metabolites of leukotriene B4 in the human subject[J]. J Biol Chem, 2003, 278(27): 24449-24460.

[本文引用: 1]

LEE J J, DIMINA D, MACIAS M P, et al. Defining a link with asthma in mice congenitally deficient in eosinophils[J]. Science, 2004, 305(5691): 1773-1776.

[本文引用: 1]

ASANUMA F, KUWABARA K, ARIMURA A, et al. Effects of leukotriene B4 receptor antagonist, LY293111Na, on antigen-induced bronchial hyperresponsiveness and leukocyte infiltration in sensitized guinea pigs[J]. Inflamm Res, 2001, 50(3): 136-141.

[本文引用: 1]

KUBO M. Mast cells and basophils in allergic inflammation[J]. Curr Opin Immunol, 2018, 54: 74-79.

[本文引用: 1]

LEE Y J, KIM C K. Montelukast use over the past 20 years: monitoring of its effects and safety issues[J]. Clin Exp Pediatr, 2020, 63(10): 376-381.

[本文引用: 1]

/