1 |
JOHNSON C C, CHANDRAN A, HAVSTAD S, et al. US childhood asthma incidence rate patterns from the ECHO consortium to identify high-risk groups for primary prevention[J]. JAMA Pediatr, 2021, 175(9): 919-927.
|
2 |
MESHRAM D, BHARDWAJ K, RATHOD C, et al. The role of leukotrienes inhibitors in the management of chronic inflammatory diseases[J]. Recent Pat Inflamm Allergy Drug Discov, 2020, 14(1): 15-31.
|
3 |
YAMAMOTO T, MIYATA J, ARITA M, et al. Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma[J]. Respir Investig, 2019, 57(6): 534-543.
|
4 |
NIALS A T, UDDIN S. Mouse models of allergic asthma: acute and chronic allergen challenge[J]. Dis Model Mech, 2008, 1(4/5): 213-220.
|
5 |
LOCKE N R, ROYCE S G, WAINEWRIGHT J S, et al. Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease[J]. Am J Respir Cell Mol Biol, 2007, 36(5): 625-632.
|
6 |
PADRID P, SNOOK S, FINUCANE T, et al. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats[J]. Am J Respir Crit Care Med, 1995, 151(1): 184-193.
|
7 |
CHO K S, PARK M K, KANG S A, et al. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma[J]. Mediators Inflamm, 2014, 2014: 436476.
|
8 |
MIYATA J, FUKUNAGA K, KAWASHIMA Y, et al. Cysteinyl leukotriene metabolism of human eosinophils in allergic disease[J]. Allergol Int, 2020, 69(1): 28-34.
|
9 |
BRUNO F, SPAZIANO G, LIPARULO A, et al. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma[J]. Eur J Med Chem, 2018, 153: 65-72.
|
10 |
LECHNER A, HENKEL F D R, HARTUNG F, et al. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma[J]. J Allergy Clin Immunol, 2022, 149(6): 2078-2090.
|
11 |
RO M, LEE A J, KIM J H. 5-/ 12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development[J]. Allergy, 2018, 73(2): 350-360.
|
12 |
DOHERTY T A, KHORRAM N, LUND S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production[J]. J Allergy Clin Immunol, 2013, 132(1): 205-213.
|
13 |
THIVIERGE M, STANKOVÁ J, ROLA-PLESZCZYNSKI M. IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages[J]. J Immunol, 2001, 167(5): 2855-2860.
|
14 |
ZHOU X J, QIN Z, LU J, et al. Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: a systematic review and meta-analysis[J]. Chin Med J, 2021, 134(24): 2954-2961.
|
15 |
DEBELLEIX S, SIAO-HIM FA V, BEGUERET H, et al. Montelukast reverses airway remodeling in actively sensitized young mice[J]. Pediatr Pulmonol, 2018, 53(6): 701-709.
|
16 |
WANG W L, LUO X M, ZHANG Q, et al. Bifidobacterium infantis relieves allergic asthma in mice by regulating Th1/Th2[J]. Med Sci Monit, 2020, 26: e920583.
|
17 |
SUN W, LIU H Y. Montelukast and budesonide for childhood cough variant asthma[J]. J Coll Physicians Surg Pak, 2019, 29(4): 345-348.
|
18 |
ELIEH ALI KOMI D, BJERMER L. Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights[J]. Clin Rev Allergy Immunol, 2019, 56(2): 234-247.
|
19 |
BRIGHTLING C E, BRUSSELLE G, ALTMAN P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma[J]. Allergy, 2020, 75(4): 761-768.
|
20 |
SCHEXNAYDRE E E, GERSTMEIER J, GARSCHA U, et al. A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 543-551.
|
21 |
MUÑOZ N M, MELITON A Y, MELITON L N, et al. Secretory group V phospholipase A2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(6): L879-L887.
|
22 |
LESLIE C C. Cytosolic phospholipase A₂: physiological function and role in disease[J]. J Lipid Res, 2015, 56(8): 1386-1402.
|
23 |
SOKOLOWSKA M, STEFANSKA J, WODZ-NASKIEWICZ K, et al. Cytosolic phospholipase A2 group IVA is overexpressed in patients with persistent asthma and regulated by the promoter microsatellites[J]. J Allergy Clin Immunol, 2010, 125(6): 1393-1395.
|
24 |
GRANATA F, STAIANO R I, LOFFREDO S, et al. The role of mast cell-derived secreted phospholipases A2 in respiratory allergy[J]. Biochimie, 2010, 92(6): 588-593.
|
25 |
TOUQUI L. Antisense inhibition of phospholipase A2: a new approach for already tested therapeutic targets for the treatment of sepsis[J]. Crit Care Med, 2012, 40(7): 2250-2251.
|
26 |
ZAMAN K, HANIGAN M H, SMITH A, et al. Endogenous S-nitrosoglutathione modifies 5-lipoxygenase expression in airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2006, 34(4): 387-393.
|
27 |
KOGA T, SASAKI F, SAEKI K, et al. Expression of leukotriene B4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation[J]. Cell Mol Immunol, 2021, 18(6): 1437-1449.
|
28 |
PAL K, FENG X, STEINKE J W, et al. Leukotriene A4 hydrolase activation and leukotriene B4 production by eosinophils in severe asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(4): 413-419.
|
29 |
HE R, CHEN Y, CAI Q. The role of the LTB4-BLT1 axis in health and disease[J]. Pharmacol Res, 2020, 158: 104857.
|
30 |
UCHIDA Y, SOMA T, NAKAGOME K, et al. Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma[J]. Ann Allergy Asthma Immunol, 2019, 123(1): 81-88.e1.
|
31 |
PREEZ S D, RAIDAL S L, DORAN G S, et al. Exhaled breath condensate hydrogen peroxide, pH and leukotriene B4 are associated with lower airway inflammation and airway cytology in the horse[J]. Equine Vet J, 2019, 51(1): 24-32.
|
32 |
STAPLETON R D, SURATT B T, NEFF M J, et al. Bronchoalveolar fluid and plasma inflammatory biomarkers in contemporary ARDS patients[J]. Biomarkers, 2019, 24(4): 352-359.
|
33 |
BERRY K A, BORGEAT P, GOSSELIN J, et al. Urinary metabolites of leukotriene B4 in the human subject[J]. J Biol Chem, 2003, 278(27): 24449-24460.
|
34 |
LEE J J, DIMINA D, MACIAS M P, et al. Defining a link with asthma in mice congenitally deficient in eosinophils[J]. Science, 2004, 305(5691): 1773-1776.
|
35 |
ASANUMA F, KUWABARA K, ARIMURA A, et al. Effects of leukotriene B4 receptor antagonist, LY293111Na, on antigen-induced bronchial hyperresponsiveness and leukocyte infiltration in sensitized guinea pigs[J]. Inflamm Res, 2001, 50(3): 136-141.
|
36 |
KUBO M. Mast cells and basophils in allergic inflammation[J]. Curr Opin Immunol, 2018, 54: 74-79.
|
37 |
LEE Y J, KIM C K. Montelukast use over the past 20 years: monitoring of its effects and safety issues[J]. Clin Exp Pediatr, 2020, 63(10): 376-381.
|