Tea is beneficial to human health, which is rich in tea pigments with important biological activities. Theabrownin, derived from theaflavins and thearubigins by oxidative polymerization, mainly distributes in semi-fermented oolong tea, and completely fermented black tea and dark tea. As a kind of macromolecular substance, theabrownin cannot be directly absorbed by the gut, but it can directly interact with intestinal microbiota to regulate and maintain the homeostasis of intestinal flora. Theabrownin has multiple physiological roles via modulating the gut microbiota, including inhibiting hepatic cholesterol production, promoting the catabolism of cholesterol and triglyceride, and promoting energy metabolism in adipose tissues, thereby improving lipid metabolism. Theabrownin can also directly influence the gut absorption of glucose to improve carbohydrate metabolism and maintain blood glucose homeostasis. Theabrownin plays an anti-tumor role by inducing apoptosis and regulating gene expression in tumor cells. Theabrownin also plays an anti-inflammatory role via participating in the regulation of the immune cell differentiation and the levels of inflammatory factors. This review summarizes the formation process, the extraction procedures, and the chemical structure of theabrownin, and reviews the effects and mechanisms of theabrownin on intestinal microbiota, lipid metabolism, blood glucose homeostasis, cancer and inflammation.
WANG Jieyi, ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua. Research progress in biological activities and mechanisms of theabrownin. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(6): 768-774 doi:10.3969/j.issn.1674-8115.2023.06.014
近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍。而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27]。研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28]。胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29]。本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢。茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6]。此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用。
The manuscript was drafted and revised by WANG Jieyi, ZHENG Dan and ZHENG Xiaojiao. The writing of the manuscript was guided by JIA Wei and ZHAO Aihua. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
YANG J Y, LIAN Y H, HU X D, et al. Sipping tea: general introduction of the organic components in tea[J]. University Chemistry, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055.
WANG J Y, ZHENG D, HUANG F J, et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Front Pharmacol, 2022, 13: 875549.
HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971.
ZHEN Q C, LIANG Q J, WANG H C, et al. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice[J]. Front Endocrinol (Lausanne), 2023, 14: 1118925.
LEUNG H K M, LO E K K, EL-NEZAMI H. Theabrownin alleviates colorectal tumorigenesis in murine AOM/DSS model via PI3K/Akt/mTOR pathway suppression and gut microbiota modulation[J]. Antioxidants (Basel), 2022, 11(9): 1716.
XU J Y, WANG W Y, LIANG X, et al. Inhibitory effect of the theabrownin and tea polysaccharide extracts of dark tea on lipase[J]. J Phys: Conf Ser, 2020, 1549: 032048.
MA W J, SHI Y L, YANG G Z, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chem, 2022, 375: 131877.
LIN F J, WEI X L, LIU H Y, et al. State-of-the-art review of dark tea: from chemistry to health benefits[J]. Trends Food Sci Technol, 2021, 109: 126-138.
XU J, WEI Y, HUANG Y, et al. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments[J]. Crit Rev Food Sci Nutr, 2022. DOI: 10.1080/10408398.2022.2093327.
GONG J S, ZHANG Q, PENG C X, et al. Curie-point pyrolysis-gas chromatography-mass spectroscopic analysis of theabrownins from fermented Zijuan tea[J]. J Anal Appl Pyrolysis, 2012, 97: 171-180.
ZHANG Y T, YAO X L, LU J, et al. Current research status and progress of the theabrownine in dark tea[J]. Science and Technology of Food Industry, 2017, 38(11): 395-399.
XU J J, CAI X M, LIN M, et al. Study of probiotics on reducing inflammatory reaction and improving glucose metabolism in patients with type 2 diabetes mellitus[J]. Diabetes New World, 2022, 25(19): 126-129.
YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food Funct, 2022, 13(4): 1921-1940.
KUANG J L, ZHENG X J, HUANG F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling[J]. Metabolites, 2020, 10(11): 475.
YUE S J, ZHAO D, PENG C X, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J]. Food Funct, 2019, 10(11): 7063-7080.
HOU Y, ZHANG Z F, CUI Y S, et al. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions[J]. Food Res Int, 2022, 162(Pt B): 112176.
LI H Y, HUANG S Y, XIONG R G, et al. Anti-obesity effect of theabrownin from dark tea in C57BL/6J mice fed a high-fat diet by metabolic profiles through gut microbiota using untargeted metabolomics[J]. Foods, 2022, 11(19): 3000.
JIANG H Y, MA Y X, ZENG W Z, et al. Effects of theaflavins, thearubigins and theabrownine on intestinal flora in rats fed with high-fat diet[J]. Science and Technology of Food Industry, 2018, 39(20): 274-279, 351.
GONG J S, PENG C X, CHEN T, et al. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action[J]. J Food Sci, 2010, 75(6): H182-H189.
JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
PENG C X, WANG Q P, LIU H R, et al. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS[J]. J Anal Appl Pyrolysis, 2013, 104: 226-233.
WANG Y, ZHAO A Q, DU H P, et al. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity[J]. J Agric Food Chem, 2021, 69(40): 11900-11911.
LI Y Z, TENG D, SHI X G, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997.
XU X T, WANG P, LUO S Z, et al. Hypoglycemic effects of fermented puer tea extracts-theabrownins in mice of type 2 diabetes[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2015, 24(20): 9-10.
WANG Y W, ZHANG M Y, ZHANG Z Z, et al. High-theabrownins instant dark tea product by Aspergillus nigervia submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity[J]. J Sci Food Agric, 2017, 97(15): 5100-5106.
NIE K L, HE L, SU X J, et al. Screening and evaluation of α-amylase-inhibiting fractions extracted from Ya'an Tibetan tea[J]. Food Science, 2013, 34(9): 74-79.
ZHAO D, ZHANG T T, PENG C X, et al. Effects of theabrowins extracted from Pu'er tea on key enzymes and tissue sections of glycolipid metabolism in rats with high sugar diet[J]. Science and Technology of Food Industry, 2019, 40(15): 298-303.
WU E K, ZHANG T T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. Eur J Nutr, 2020, 59(5): 1937-1950.
YANG X H, LIU Z H, HUANG J N, et al. The effect of fraction 5 of theabrownin from Pu-erh tea on 3T3-L1 preadipocyte proliferation and differentiation[J]. J Food Nutr Res, 2014, 2(12): 1000-1006.
WANG Y Y, YUAN Y, WANG C P, et al. Theabrownins produced via chemical oxidation of tea polyphenols inhibit human lung cancer cells in vivo and in vitro by suppressing the PI3K/AKT/mTOR pathway activation and promoting autophagy[J]. Front Nutr, 2022, 9: 858261.
ZHOU L, WU F F, JIN W D, et al. Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism[J]. Front Pharmacol, 2017, 8: 75.
WU F F, ZHOU L, JIN W D, et al. Anti-proliferative and apoptosis-inducing effect of theabrownin against non-small cell lung adenocarcinoma A549 cells[J]. Front Pharmacol, 2016, 7: 465.
JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 670-681.
XU J A, YAN B, ZHANG L, et al. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway[J]. Onco Targets Ther, 2020, 13: 8977-8987.
XU J A, XIAO X J, YAN B, et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression[J]. Cancer Cell Int, 2022, 22(1): 39.
CHEN X Q, HU Y X, WANG B J, et al. Characterization of theabrownins prepared from tea polyphenols by enzymatic and chemical oxidation and their inhibitory effect on colon cancer cells[J]. Front Nutr, 2022, 9: 849728.
LI T, YAN B, XIAO X J, et al. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin[J]. FASEB J, 2022, 36(8): e22426.
FU J Y, JIANG C X, WU M Y, et al. Theabrownin induces cell apoptosis and cell cycle arrest of oligodendroglioma and astrocytoma in different pathways[J]. Front Pharmacol, 2021, 12: 664003.
JIN W D, GU C Q, ZHOU L, et al. Theabrownin inhibits the cytoskeleton‑dependent cell cycle, migration and invasion of human osteosarcoma cells through NF‑κB pathway‑related mechanisms[J]. Oncol Rep, 2020, 44(6): 2621-2633.
JIN W D, ZHOU L, YAN B, et al. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway[J]. J Cell Mol Med, 2018, 22(9): 4423-4436.
ZHAO H, ZHANG M, ZHAO L, et al. Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea[J]. Int J Mol Sci, 2011, 12(3): 1862-1875.
XU J Y, LI X L, LI J, et al. Protective effect of extracted theabrownines from Ya'an Tibetan tea on radiation damage in mice caused by 60Co γ-ray[J]. Nuclear Techniques, 2017, 40(4): 040301.
YANG W Q, REN D Y, SHAO H J, et al. Theabrownin from Fu brick tea improves ulcerative colitis by shaping the gut microbiota and modulating the tryptophan metabolism[J]. J Agric Food Chem, 2023, 71(6): 2898-2913.
HU S S, LI S, LIU Y, et al. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. J Agric Food Chem, 2021, 69(36): 10592-10605.
LEI S W, ZHANG Z F, XIE G H, et al. Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose[J]. J Funct Foods, 2022, 89: 104941.
ZHONG Z W, LU Q, DING S F. Study the effects and mechanism of theabrownin on aortic atherosclerosis in ApoE-/- mice fed with high-fat diet[J]. Military Medical Journal of South China, 2020, 34(3): 151-155.
ZHANG L, SHAO W F, YUAN L F, et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM)[J]. Food Chem, 2012, 135(4): 2222-2228.
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
1
... Genus: Desulfovibrio
[26]
2.2 改善脂质代谢
近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
1
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
3
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...
1
... 近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍.而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素[27].研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成[5],且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解[28].胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要[29].本课题组的前期研究[6]表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢.茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus)、芽孢杆菌属(Baccillus)、链球菌属(Streptococcus)、乳球菌属(Lactococcus)、肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降[6].此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出[30],达到降低胆固醇的作用. ...