上海交通大学学报(医学版), 2023, 43(6): 768-774 doi: 10.3969/j.issn.1674-8115.2023.06.014

综述

茶褐素生物学活性及其作用机制的研究进展

王洁仪,, 郑丹, 郑晓皎, 贾伟, 赵爱华,

上海交通大学医学院附属第六人民医院转化医学中心,上海 200233

Research progress in biological activities and mechanisms of theabrownin

WANG Jieyi,, ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua,

Center for Translational Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

通讯作者: 赵爱华,电子信箱:zhah@sjtu.edu.cn

编委: 瞿麟平

收稿日期: 2023-02-14   接受日期: 2023-05-30   网络出版日期: 2023-06-28

基金资助: 国家自然科学基金.  82170833

Corresponding authors: ZHAO Aihua, E-mail:zhah@sjtu.edu.cn.

Received: 2023-02-14   Accepted: 2023-05-30   Online: 2023-06-28

作者简介 About authors

王洁仪(1996—),女,硕士生;电子信箱:wangjieyii@sjtu.edu.cn。 E-mail:wangjieyii@sjtu.edu.cn

摘要

茶对人体健康发挥多种重要的调节作用,其富含的茶色素类物质逐渐被发现具有重要的生物学活性。其中由茶黄素、茶红素等酚类物质进一步氧化聚合而成的茶褐素,主要存在于部分发酵的乌龙茶以及全发酵的红茶和黑茶中。茶褐素作为一种天然大分子物质,在肠道中不能直接被吸收入血发挥作用,但它可以与肠道菌接触,调节肠道菌群结构,维持肠道菌群稳态。茶褐素通过调节肠道菌群的结构和功能发挥多种生物学活性。茶褐素可通过抑制肝脏胆固醇生成、促进胆固醇和三酰甘油分解代谢、促进脂肪组织能量代谢,改善机体脂质代谢;可直接影响肠道对碳水化合物的吸收,改善糖代谢,维持血糖稳态;通过诱导肿瘤细胞凋亡和调节肿瘤细胞基因表达,发挥抗肿瘤的作用;另外茶褐素还能参与调节免疫细胞分化和多种炎症因子表达,发挥抗炎作用。该文总结了茶褐素在茶叶中的形成过程和提取方法,以及茶褐素结构组成的特点,并详细阐述了茶褐素对肠道菌群、脂质代谢、血糖稳态、肿瘤和炎症等方面的调节作用及其作用机制的研究进展。

关键词: 茶褐素 ; 肠道菌群 ; 代谢性疾病 ; 抗肿瘤 ; 抗炎

Abstract

Tea is beneficial to human health, which is rich in tea pigments with important biological activities. Theabrownin, derived from theaflavins and thearubigins by oxidative polymerization, mainly distributes in semi-fermented oolong tea, and completely fermented black tea and dark tea. As a kind of macromolecular substance, theabrownin cannot be directly absorbed by the gut, but it can directly interact with intestinal microbiota to regulate and maintain the homeostasis of intestinal flora. Theabrownin has multiple physiological roles via modulating the gut microbiota, including inhibiting hepatic cholesterol production, promoting the catabolism of cholesterol and triglyceride, and promoting energy metabolism in adipose tissues, thereby improving lipid metabolism. Theabrownin can also directly influence the gut absorption of glucose to improve carbohydrate metabolism and maintain blood glucose homeostasis. Theabrownin plays an anti-tumor role by inducing apoptosis and regulating gene expression in tumor cells. Theabrownin also plays an anti-inflammatory role via participating in the regulation of the immune cell differentiation and the levels of inflammatory factors. This review summarizes the formation process, the extraction procedures, and the chemical structure of theabrownin, and reviews the effects and mechanisms of theabrownin on intestinal microbiota, lipid metabolism, blood glucose homeostasis, cancer and inflammation.

Keywords: theabrownin ; intestinal microbiota ; metabolic disease ; antitumor ; anti-inflammatory

PDF (1358KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王洁仪, 郑丹, 郑晓皎, 贾伟, 赵爱华. 茶褐素生物学活性及其作用机制的研究进展. 上海交通大学学报(医学版)[J], 2023, 43(6): 768-774 doi:10.3969/j.issn.1674-8115.2023.06.014

WANG Jieyi, ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua. Research progress in biological activities and mechanisms of theabrownin. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(6): 768-774 doi:10.3969/j.issn.1674-8115.2023.06.014

茶作为世界三大饮料之一1,在中国具有悠久的饮用历史2。早在《神农本草经》就记载茶有抗炎解毒的功效3。在《本草纲目拾遗》中记载了盛产于云南的普洱茶具有“解油腻牛羊毒,苦涩,逐痰下气,利肠通泄”的作用4。茶褐素(theabrownin)作为部分发酵茶和全发酵茶中的主要活性成分之一,其化学组成复杂,含有多种活性基团,是一类高分子聚合物。研究5-8发现,茶褐素具有调节肠道微生物、改善代谢性疾病的作用,同时对肿瘤、炎症等具有调节作用。为了提高对茶褐素生物活性的认知,深入了解其作用机制,以便更广泛地推广应用,本文就目前茶褐素对人体健康的调节作用进行了综述,重点总结了其对肠道菌群稳态、脂质代谢、血糖、肿瘤和炎症方面的作用及其机制。

1 茶褐素的来源和组成

茶褐素由新鲜茶叶在一定的温度和微生物的作用下经过渥堆发酵而成9,主要存在于部分发酵的乌龙茶,如铁观音和武夷岩茶等,以及全发酵的各种红茶和黑茶,如普洱茶、茯砖、藏茶、六堡茶等10。在发酵过程中,儿茶素、表儿茶素以及没食子酸酯衍生物被氧化为复杂的茶黄素和茶红素,茶黄素和茶红素进一步氧化聚合成为褐色的茶褐素610。在不同种类的茶叶中茶褐素的含量存在差异:普洱茶中的茶褐素含量为8.08%~23.68%11-12,茯砖中的含量为3.17%~9.14%11-12,藏茶中的含量为3.07%~3.29%11,六堡茶中的含量为5.84%~10.00%1113

茶褐素可溶于水,不溶于氯仿、醋酸乙酯、正丁醇等有机试剂。因此,通常从茶中进行水提取后,依次用以上有机溶剂萃取除去咖啡因等脂溶性成分、茶黄素、茶红素和皂苷等,最后得到富含茶褐素的水溶液,进一步经浓缩、干燥后获得茶褐素粉14-15。近年来有文献16报道,茶褐素在原子力显微镜下呈现出形态不均一的单分子岛状或颗粒聚集体状。当颗粒聚集较多时,出现线性连接状,并伴有较多分支。当聚集到更大的颗粒时,则呈现出网状结构。经过高效液相色谱和交叉极化/魔角旋转固体磁共振等多种技术解析发现,茶褐素是一类富含羟基、羧基、甲基和氨基等多种功能性基团的具有酚类物质特性的褐色高聚物17

2 茶褐素的生物学活性

2.1 维持肠道菌群稳态

国内外研究18-19表明,代谢性疾病的发生发展与肠道菌群紊乱有着密切的关系,代谢异常人群与代谢正常人群的肠道菌群有着显著差异。茶褐素作为聚合大分子物质,不能被肠道直接吸收,但它直接与肠道菌接触,可以改变肠道菌群的组成结构,影响肠道菌的功能,从而发挥重要的生理病理调节功能。研究20表明,高脂饮食的小鼠在茶褐素的作用下,肠道菌的结构与高脂饮食对照组小鼠有着明显差异,茶褐素使肠道菌群的α多样性增加,辛普森指数明显高于高脂饮食对照组小鼠。在门水平上,茶褐素使小鼠肠道厚壁菌门(Firmicutes)丰度以及肥胖相关的厚壁菌门与拟杆菌门(Bacteroidetes)丰度比值显著降低,拟杆菌门、放线菌门(Actinobacteria)和变形菌门(Proteobacteria)的丰度增加21。在种水平上,茶褐素使小鼠肠道嗜黏蛋白阿克曼菌(Akkermansia muciniphila)、多形拟杆菌(Bacteroides thetaiotaomicron)、鼠乳杆菌(Lactobacillus rhamnosus)、狄氏副拟杆菌(Parabacteroides distasonis)、约氏乳杆菌(Lactobacillus johnsonii)、戈氏副拟杆菌(Parabacteroides goldsteinii)、变异棒杆菌(Corynebacterium variabile)、梭状芽孢杆菌(Clostridium scindens)和产酸拟杆菌(Bacteroides acidifaciens)等显著升高20-21,显著抑制致病菌如大肠埃希菌(Escherichia coli)的生长,并随着茶褐素干预时间的延长,效果更明显22表1汇总了茶褐素显著改变的肠道菌群。茶褐素可以通过改变肠道菌群调节单磷酸腺苷激活的蛋白激酶(AMP-activated protein kinase,AMPK)信号通路、胰岛素信号通路、胆汁分泌和甘油磷脂代谢等改善葡萄糖和脂代谢20。因此,茶褐素可以通过调节肠道菌群的微生态结构,对机体发挥有益的调节作用。

表1   茶褐素干预后显著变化的肠道菌群

Tab 1  Significantly differential gut microbiota after theabrownin intervention

Animal modelUp-regulated gut microbiotaDown-regulated gut microbiotaReference
Azoxymethane/dextran sodium sulphate-induced colorectal cancer in mice

Family: Rinoccaceae, Ruminococcaceae, Prevotellaceae

Genus: Romboutsia, Anaeroplasma, Ruminococcus, Parabacteroides, Rikenellaceae RC9, Parvibacter, Alloprevotella

Family: Bacteroidceae

Genus: Bacteroides

[8]
Mice with high-fat dietGenus: Lactobacillus, Bacillus, Streptococcus, Lactococcus, Enterococcus[6]
Rats with high-sugar diet

Phylum: Bacteroidetes, Proteobacteria

Genus: Alloprevotella, Coprostanoligenes group, Bacteroides, Prevotellaceae NK3B31 group, Desulfovibrio, Intestinimonas, Astipes, Bifidobacterium, Phascolarctobacterium, Ruminococcaceae UCG-010, Staphylococcus

Species: Bacteroides acidifaciens, Staphylococcus saprophyticus subsp., Lactobacillus murinus

Phylum: Firmicutes

Family: Prevotellaceae Ga6A1 group

Genus: Lactobacillus, Tyzzerella

[23]
Mice with high-fat dietSpecies: Clostridium scindens, Akmermansia muciniphila, Parabacteroides distasonis[21]
db/db Mice with high-fat dietSpecies: Clostridioides difficile 42_27, Blautia coccoides, Firmicutes bacterium ASF500Species: Brevundimonas vesicularis[24]
Mice with high-fat dietGenus: Clostridium[25]
Rats with high-fat diet

Phylum: Bacteroidetes, Actinobacteria, Proteobacteria

Species: Bacteroides thetaiotaomicron, Parabacteroides distasonis, Bacteroides acidifaciens, Lactobacillus murinus, Parabacteroides goldsteinii, Corynebacterium variabile

Species: Lachnospiraceae bacterium PG-426-CC-1, Brachyspira sp. NSH-25, Desulfovibrio sp. UNSW3caefatS, Bacteroides uniformis[20]
Rats with high-fat diet

Family: Lachnospiraceae

Genus: Lactobacillus, Akkermansia

Family: Ruminococcaceae

Genus: Desulfovibrio

[26]

新窗口打开| 下载CSV


2.2 改善脂质代谢

近年来随着肥胖人群的日益增多,高脂血症、脂肪肝等代谢性疾病越来越普遍。而血清中胆固醇水平异常升高,是动脉粥样硬化、冠心病、脂肪肝等的重要危险因素27。研究表明,茶褐素可以显著降低由高脂饮食诱导肥胖小鼠的胆固醇水平,通过抑制肝脏胆固醇合成关键酶减少胆固醇的生成5,且茶褐素还可以上调促进胆固醇分解代谢的肝脂酶的表达水平,促进胆固醇的分解28。胆汁酸是由肝细胞中的胆固醇合成,是胆固醇分解代谢的主要产物,因此胆汁酸的合成和排泄对维持胆固醇稳态至关重要29。本课题组的前期研究6表明,茶褐素通过重塑肠道菌群结构,影响胆汁酸代谢,进而调节胆固醇分解代谢。茶褐素显著下调具有胆汁盐水解酶(bile salt hydrolase,BSH)功能的相关微生物(如乳杆菌属(Lactobaccillus芽孢杆菌属(Baccillus链球菌属(Streptococcus乳球菌属(Lactococcus肠球菌属(Enterococcus)的丰度,使小鼠回肠腔中肠道菌的BSH活性下降,结合性胆汁酸(如牛磺鹅去氧胆酸和牛磺熊去氧胆酸等)显著增加,从而抑制肠道法尼醇X受体(FXR)/成纤维细胞生长因子15/19(FGF15/19)/成纤维细胞生长因子受体4(FGFR4)信号通路,促进肝脏胆固醇的胆汁酸合成替代途径的关键酶细胞色素P450家族7亚家族B成员1(cytochrome P450 family 7 subfamily B member 1,Cyp7b1)和细胞色素P450 27A1(cytochrome P450 27A1,Cyp27a1)的表达,鹅去氧胆酸的合成明显增加,胆固醇水平明显下降6。此外,高脂血症大鼠经茶褐素干预后,粪便胆汁酸浓度较对照组更高,提示茶褐素加速了胆固醇生成胆汁酸的代谢,并促进胆汁酸从粪便的排出30,达到降低胆固醇的作用。

三酰甘油是由甘油的3个羟基与3个脂肪酸分子酯化生成的有机化合物。血清中三酰甘油增高与糖尿病、肥胖、心血管疾病等的发生发展密切相关。激素敏感脂肪酶(hormone-sensitive triglyceride lipase,HSL)参与脂肪细胞的三酰甘油代谢,是动物脂肪分解过程中的关键限速酶。研究28表明,茶褐素能促进肝脏和白色脂肪的Hsl基因表达,提升HSL活性,促进脂质分解,降低血脂水平。脂肪酸作为三酰甘油分解代谢的重要代谢物参与机体的能量储存和利用,其中不饱和脂肪酸能有效促使胆固醇酯化,改善脂质代谢。与对照组相比,茶褐素干预后的高脂饮食小鼠血清中二十二碳六烯酸和二十二碳五烯酸等不饱和脂肪酸水平显著上升,而辛二酸和癸二酸等饱和脂肪酸水平则明显下降5;小鼠粪便中乙酸、丙酸、丁酸和戊酸等短链脂肪酸明显上调20。此外,摄入茶褐素后,小鼠肝脏中的脂肪酸合成酶的mRNA表达水平显著降低,而参与脂肪酸氧化的过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor α,PPARα)被激活,促进脂肪酸的β-氧化,降低血清中的脂肪酸水平。在白色脂肪组织中,茶褐素上调解偶联蛋白1和PPARγ辅激活因子1α的mRNA水平,促进白色脂肪米色化,刺激线粒体解偶联呼吸,使机体产热增加并促进能量消耗。同样,茶褐素也能促进棕色脂肪细胞的脂肪酸氧化2131。另外,茶褐素还可以提高血清中脂联素和瘦素水平,减少脂肪细胞中的脂肪储存并促进脂肪酸氧化利用20

此外,茶褐素可以显著降低肥胖小鼠的肝脏和白色脂肪质量。肝脏组织切片显示,茶褐素可以有效缓解高脂饮食诱导的肝脏病理变化,如肝细胞脂肪空泡体积和数量明显减少,肝脏细胞脂质堆积得到改善,并能显著降低谷草转氨酶、谷丙转氨酶、白介素-10(interleukin-10,IL-10)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等水平,改善肝功能并减轻炎症528。茶褐素促进肠道内具有7α/β-脱羟化酶功能的梭状芽孢杆菌丰度的增加,使鹅去氧胆酸转化为熊去氧胆酸21;而鹅去氧胆酸和熊去氧胆酸均能激活人棕色脂肪细胞中的G蛋白偶联受体5,诱导线粒体产能,增加能量消耗6,改善脂质代谢。

因此,茶褐素能通过调节肠道菌群、调节肝脏功能及多种代谢途径促进胆固醇的代谢、脂质的分解,并促进胆汁酸的排泄,从而有效地缓解脂质代谢紊乱。

2.3 维持血糖稳态

中国是全球糖尿病患者人数最多的国家,近年来中国总糖尿病和糖尿病前期的患病率逐步上升32。一系列研究表明,茶褐素对血糖有调节作用。在一项随机、双盲、交叉设计的临床试验中,与安慰剂组相比,普洱茶组在摄入指定食物后60、90和120 min的血糖水平较安慰剂组显著降低,推测可能与其主要活性成分茶褐素对α-葡萄糖苷酶的影响有关22。摄入普洱茶的糖尿病小鼠空腹血糖及空腹胰岛素水平显著下降,且在一定范围内有剂量效应关系。普洱茶通过调节糖尿病小鼠的肝细胞葡萄糖摄取,使葡萄糖合成肝糖原增加,从而发挥调节糖代谢、降低空腹血糖的作用33。α-葡萄糖苷酶存在于小肠刷状缘上,可将复杂的多糖碳水化合物水解为单糖,促进机体对碳水化合物的吸收利用20。体外研究34-36表明,茶褐素具有抑制α-淀粉酶和α-葡萄糖苷酶的活性,延缓肠道来源的碳水化合物的吸收,从而维持餐后血糖的平稳。另外,茶褐素对肥胖大鼠具有升高血清葡萄糖激酶浓度、促进葡萄糖分解、降低血糖的作用20。在2型糖尿病小鼠模型中,茶褐素能显著降低空腹血糖,改善葡萄糖耐量和胰岛素敏感性33。还有研究2037报道,茶褐素对由于糖尿病导致的胰腺组织损伤有预防保护作用,能维持胰腺小岛细胞的形态和结构,保障胰腺的正常功能。血清中亮氨酸和缬氨酸(均为支链氨基酸)的增加会导致胰岛素抵抗和血糖升高,而茶褐素可显著降低血清中支链氨基酸的含量2338。在体外,茶褐素还可以减少前脂肪细胞的蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)的蛋白表达水平,激活胰岛素受体蛋白并促进葡萄糖转运蛋白4易位到细胞膜,促进细胞对葡萄糖的摄入39

综上,茶褐素能延缓肠道糖的吸收,对胰腺具有保护作用,并通过多种途径改善糖代谢,维持血糖稳态;但是目前对于茶褐素改善糖代谢的分子机制仍不十分明确,亟待进一步的阐明。

2.4 抑制肿瘤生长

近年来的研究发现,茶褐素对肝细胞癌、肺癌和结直肠癌等有一定的抑制作用。

茶褐素对非小细胞肺癌细胞的增殖生长有显著的抑制作用,且能调节肿瘤细胞的细胞周期;还可以抑制裸鼠异种移植人肺癌模型中肿瘤的生长,且未发现明显的肝毒性、大脑毒性和肾毒性40。茶褐素可以激活裸鼠异种移植肺癌中的磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(PKB,又称AKT)/哺乳动物雷帕霉素靶蛋白(mTOR)通路,增加下游基因的表达,增加自噬通量并抑制细胞增殖,诱导G1期细胞周期阻滞,从而抑制小鼠体内肺癌细胞的生长40。在体外实验41中,茶褐素干预后,肺癌细胞G0/G1期的细胞数量显著增加,S期和G2/M期的细胞数量显著减少,提示茶褐素使肺癌细胞发生了细胞周期阻滞,抑制了肿瘤细胞的增殖;而且茶褐素干预后,具有染色质固缩和核碎裂等凋亡特征的肺癌细胞明显增多,这可能与茶褐素显著降低抑凋亡基因,并上调促凋亡相关基因的mRNA水平有关42

肝癌是常见的癌症之一,全球每年约有80万人死于该病43。研究44显示,茶褐素能抑制肝细胞癌Huh7细胞的细胞活力,且呈剂量和时间依赖性。茶褐素对斑马鱼异种移植的肝脏肿瘤有明显的抑制作用44。体外实验44-45结果表明,茶褐素可以通过激活凋亡信号调节蛋白1(ASK1)/c-Jun氨基末端激酶(JNK)/c-Jun信号通路和P53信号通路,上调促凋亡分子的mRNA表达水平,促进肝癌细胞的凋亡,从而发挥抑瘤作用。

结直肠癌(colorectal cancer,CRC)是全球第三大常见的癌症46。茶褐素可以显著减少CRC小鼠的肿瘤数量,并改善结肠的隐窝长度和结肠纤维化8。免疫组织化学染色表明,茶褐素可抑制CRC小鼠肿瘤中的增殖标志物Ki67的表达,并上调凋亡标志物胱天蛋白酶3(caspase 3),提示茶褐素对CRC细胞具有抑制增殖并诱导凋亡的作用。此外,茶褐素通过抑制PI3K/AKT/mTOR信号通路,阻断小鼠CRC的细胞周期,促进细胞凋亡8。茶褐素还能通过调节小鼠肠道菌群,缓解肠道炎症,加强肠道屏障,减少CRC的发生8。体外实验47发现,茶褐素能显著降低人CRC细胞的抗氧化酶基因谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、过氧化氢酶(catalase,CAT)和超氧化物歧化酶(superoxide dismutase,SOD)的表达,增加活性氧的产生,促使肿瘤细胞产生氧化应激,进而导致肿瘤细胞的损伤与死亡。

此外,有研究报道,茶褐素还对其他肿瘤生长具有一定抑制作用,如黑色素瘤48、胶质瘤49、骨肉瘤50-51和胃癌52等。同时,茶褐素可以改善辐射后小鼠的骨髓细胞数目并维持造血系统的正常功能53

综上,茶褐素能通过诱导肿瘤细胞凋亡、调节肿瘤细胞基因表达等发挥抗多种肿瘤的作用。

2.5 抗炎作用

有研究发现,茶褐素在多种疾病中具有抗炎的作用。

当结肠炎小鼠摄入茶褐素后,外周血白细胞显著减少,IL-22升高,肠道屏障修复54。巨噬细胞在肠道免疫中占有重要地位,通过极性分化影响结肠炎的发展,其中M1型巨噬细胞主要参与促炎反应,M2型巨噬细胞主要参与抗炎反应。在结肠炎小鼠中,普洱茶(富含茶褐素)能促进结肠组织中M1型巨噬细胞比例的降低、M2型巨噬细胞比例的升高,达到抗炎的效果55。在脂多糖刺激巨噬细胞模拟炎症的过程中,当培养基中加入茶褐素后,在一定范围内,IL-6和TNF-α的水平随着茶褐素干预时间的延长和浓度的增大,逐步下降56。动物实验57表明,茶褐素能抑制结肠炎症相关通路蛋白的表达,并下调IL-6和TNF-α等促炎因子的水平。

炎症与非酒精性脂肪肝的发生发展有着密切的关系。研究7表明,茶褐素能有效减少非酒精性脂肪肝组织中巨噬细胞和中性粒细胞的浸润,缓解肝脏炎症和纤维化。茶褐素能抑制核因子κB(nuclear factor-κB,NF-κB)和JNK信号通路,显著降低肝脏促炎因子如IL-1β和细胞间黏附分子1的mRNA水平,还能显著下调肝脏纤维化相关基因的表达水平,抑制肝星状细胞的活化和增殖,减少细胞外基质沉积,从而有效缓解肝纤维化进程。

此外,茶褐素还在其他多种疾病中发挥抗炎作用。在茶褐素的作用下,动脉粥样硬化斑块中的淋巴细胞和巨噬细胞数量,以及单核细胞趋化蛋白和IL-6的表达均显著下降,且在一定范围内,TNF-α、IL-1β和IL-6的降低水平与茶褐素存在剂量依赖关系37;茶褐素可以通过免疫调节抑制动脉粥样硬化斑块的形成58。同时,普洱茶可以有效降低老年小鼠血清中C反应蛋白和促炎细胞因子,如IL-6、TNF-α和IL-1β等炎症因子的水平59

综上,茶褐素可以参与免疫应答细胞的增殖及分化,从而调节多种炎症因子的水平,发挥免疫调节作用。

3 结语与展望

茶作为一种饮料,在我国有着悠久的历史和广泛的民间应用基础。近年来国内外对茶与人体健康的深入研究发现,茶对肥胖、糖尿病、脂肪肝等代谢性疾病均有调节作用;特别是其中的茶褐素,作为重要的活性成分之一,已经被证实具有调节肠道菌群、改善脂质代谢、维持血糖稳态、抑制肿瘤和抗炎等多种功效。由于茶褐素是高分子聚合物,不能被机体直接吸收,因此茶褐素对肠道菌群的调节作用可能介导了其他生物学功能,也是未来深入研究茶褐素生物学活性机制的关键和突破口。

作者贡献声明

王洁仪、郑丹和郑晓皎负责论文的撰写与修改,贾伟和赵爱华指导论文写作。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The manuscript was drafted and revised by WANG Jieyi, ZHENG Dan and ZHENG Xiaojiao. The writing of the manuscript was guided by JIA Wei and ZHAO Aihua. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

孙芝杨. 世界三大饮料与“苦味”物质[J]. 饮料工业, 2009, 12(1): 8-9.

[本文引用: 1]

SUN Z Y. The world's 3 most popular beverages and bitter substances[J]. Beverage Industry, 2009, 12(1): 8-9.

[本文引用: 1]

朱永兴, 姜爱芹. 咖啡、可可和茶的全球发展比较研究[J]. 茶叶科学, 2010, 30(6): 493-500.

[本文引用: 1]

ZHU Y X, JIANG A Q. Comparation on the development of coffee, cocoa and tea of the world[J]. Journal of Tea Science, 2010, 30(6): 493-500.

[本文引用: 1]

杨佳怡, 连宇晗, 胡向东, 等. “品”茶: 浅谈茶叶中的有机化学成分[J]. 大学化学, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055.

[本文引用: 1]

YANG J Y, LIAN Y H, HU X D, et al. Sipping tea: general introduction of the organic components in tea[J]. University Chemistry, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055.

[本文引用: 1]

吴德亮. 普洱藏茶[M]. 武汉: 华中科技大学出版社, 2019: 225-235.

[本文引用: 1]

WU D L. Pu-erh tibet tea[M]. Wuhan: Huazhong University of Science & Technology Press, 2019: 225-235.

[本文引用: 1]

WANG J Y, ZHENG D, HUANG F J, et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Front Pharmacol, 2022, 13: 875549.

[本文引用: 4]

HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971.

[本文引用: 5]

ZHEN Q C, LIANG Q J, WANG H C, et al. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice[J]. Front Endocrinol (Lausanne), 2023, 14: 1118925.

[本文引用: 1]

LEUNG H K M, LO E K K, EL-NEZAMI H. Theabrownin alleviates colorectal tumorigenesis in murine AOM/DSS model via PI3K/Akt/mTOR pathway suppression and gut microbiota modulation[J]. Antioxidants (Basel), 2022, 11(9): 1716.

[本文引用: 5]

JIA W, RAJANI C, LV A P, et al. Pu-erh tea: a review of a healthful brew[J]. J Tradit Chin Med Sci, 2022, 9(2): 95-99.

[本文引用: 1]

WANG Q P, GONG J S, CHISTI Y, et al. Production of theabrownins using a crude fungal enzyme concentrate[J]. J Biotechnol, 2016, 231: 250-259.

[本文引用: 2]

XU J Y, WANG W Y, LIANG X, et al. Inhibitory effect of the theabrownin and tea polysaccharide extracts of dark tea on lipase[J]. J Phys: Conf Ser, 2020, 1549: 032048.

[本文引用: 4]

MA W J, SHI Y L, YANG G Z, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chem, 2022, 375: 131877.

[本文引用: 2]

LIN F J, WEI X L, LIU H Y, et al. State-of-the-art review of dark tea: from chemistry to health benefits[J]. Trends Food Sci Technol, 2021, 109: 126-138.

[本文引用: 1]

XU J, WEI Y, HUANG Y, et al. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments[J]. Crit Rev Food Sci Nutr, 2022. DOI: 10.1080/10408398.2022.2093327.

[本文引用: 1]

GONG J S, ZHANG Q, PENG C X, et al. Curie-point pyrolysis-gas chromatography-mass spectroscopic analysis of theabrownins from fermented Zijuan tea[J]. J Anal Appl Pyrolysis, 2012, 97: 171-180.

[本文引用: 1]

孟宪钰. 普洱熟茶加成儿茶素及茶褐素化学研究[D]. 昆明: 昆明理工大学, 2019.

[本文引用: 1]

MENG X Y. Chemical research on addition catechins and theabrownins of Pu-erh tea[D]. Kunming: Kunming University of Science and Technology, 2019.

[本文引用: 1]

张云天, 姚晓玲, 鲁江, 等. 黑茶茶褐素的研究现状及进展[J]. 食品工业科技, 2017, 38(11): 395-399.

[本文引用: 1]

ZHANG Y T, YAO X L, LU J, et al. Current research status and progress of the theabrownine in dark tea[J]. Science and Technology of Food Industry, 2017, 38(11): 395-399.

[本文引用: 1]

FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71.

[本文引用: 1]

许军军, 蔡吓明, 林妹, 等. 益生菌对2型糖尿病患者降低炎症反应及改善糖代谢的研究[J]. 糖尿病新世界, 2022, 25(19): 126-129.

[本文引用: 1]

XU J J, CAI X M, LIN M, et al. Study of probiotics on reducing inflammatory reaction and improving glucose metabolism in patients with type 2 diabetes mellitus[J]. Diabetes New World, 2022, 25(19): 126-129.

[本文引用: 1]

YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food Funct, 2022, 13(4): 1921-1940.

[本文引用: 9]

KUANG J L, ZHENG X J, HUANG F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling[J]. Metabolites, 2020, 10(11): 475.

[本文引用: 5]

TAKEDA R, FURUNO Y, IMAI S, et al. Effect of powdered beverages containing Pu-erh tea extract on postprandial blood glucose levels[J]. Funct Foods Health Dis, 2019, 9(8): 532.

[本文引用: 2]

YUE S J, ZHAO D, PENG C X, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J]. Food Funct, 2019, 10(11): 7063-7080.

[本文引用: 2]

HOU Y, ZHANG Z F, CUI Y S, et al. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions[J]. Food Res Int, 2022, 162(Pt B): 112176.

[本文引用: 1]

LI H Y, HUANG S Y, XIONG R G, et al. Anti-obesity effect of theabrownin from dark tea in C57BL/6J mice fed a high-fat diet by metabolic profiles through gut microbiota using untargeted metabolomics[J]. Foods, 2022, 11(19): 3000.

[本文引用: 1]

蒋慧颖, 马玉仙, 曾文治, 等. 茶黄素、茶红素与茶褐素对高脂饮食大鼠肠道菌群的影响[J]. 食品工业科技, 2018, 39(20): 274-279, 351.

[本文引用: 1]

JIANG H Y, MA Y X, ZENG W Z, et al. Effects of theaflavins, thearubigins and theabrownine on intestinal flora in rats fed with high-fat diet[J]. Science and Technology of Food Industry, 2018, 39(20): 274-279, 351.

[本文引用: 1]

LUO J, YANG H Y, SONG B L. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.

[本文引用: 1]

GONG J S, PENG C X, CHEN T, et al. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action[J]. J Food Sci, 2010, 75(6): H182-H189.

[本文引用: 3]

JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.

[本文引用: 1]

PENG C X, WANG Q P, LIU H R, et al. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS[J]. J Anal Appl Pyrolysis, 2013, 104: 226-233.

[本文引用: 1]

WANG Y, ZHAO A Q, DU H P, et al. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity[J]. J Agric Food Chem, 2021, 69(40): 11900-11911.

[本文引用: 1]

LI Y Z, TENG D, SHI X G, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997.

[本文引用: 1]

徐湘婷, 王鹏, 罗绍忠, 等. 普洱熟茶茶褐素对2型糖尿病小鼠降糖作用研究[J]. 中国民族民间医药, 2015, 24(20): 9-10.

[本文引用: 2]

XU X T, WANG P, LUO S Z, et al. Hypoglycemic effects of fermented puer tea extracts-theabrownins in mice of type 2 diabetes[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2015, 24(20): 9-10.

[本文引用: 2]

HAO W X, WANG M, LV M X. The inhibitory effects of Yixing black tea extracts on α-glucosidase[J]. J Food Biochem, 2017, 41(1): e12269.

[本文引用: 1]

WANG Y W, ZHANG M Y, ZHANG Z Z, et al. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity[J]. J Sci Food Agric, 2017, 97(15): 5100-5106.

聂坤伦, 何利, 速晓娟, 等. 雅安藏茶抑制α-淀粉酶的活性级分筛选与评价[J]. 食品科学, 2013, 34(9): 74-79.

[本文引用: 1]

NIE K L, HE L, SU X J, et al. Screening and evaluation of α-amylase-inhibiting fractions extracted from Ya'an Tibetan tea[J]. Food Science, 2013, 34(9): 74-79.

[本文引用: 1]

赵丹, 张婷婷, 彭春秀, 等. 普洱茶茶褐素对高糖饮食大鼠糖脂代谢关键酶及组织切片的影响[J]. 食品工业科技, 2019, 40(15): 298-303.

[本文引用: 2]

ZHAO D, ZHANG T T, PENG C X, et al. Effects of theabrowins extracted from Pu'er tea on key enzymes and tissue sections of glycolipid metabolism in rats with high sugar diet[J]. Science and Technology of Food Industry, 2019, 40(15): 298-303.

[本文引用: 2]

WU E K, ZHANG T T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. Eur J Nutr, 2020, 59(5): 1937-1950.

[本文引用: 1]

YANG X H, LIU Z H, HUANG J N, et al. The effect of fraction 5 of theabrownin from Pu-erh tea on 3T3-L1 preadipocyte proliferation and differentiation[J]. J Food Nutr Res, 2014, 2(12): 1000-1006.

[本文引用: 1]

WANG Y Y, YUAN Y, WANG C P, et al. Theabrownins produced via chemical oxidation of tea polyphenols inhibit human lung cancer cells in vivo and in vitro by suppressing the PI3K/AKT/mTOR pathway activation and promoting autophagy[J]. Front Nutr, 2022, 9: 858261.

[本文引用: 2]

ZHOU L, WU F F, JIN W D, et al. Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism[J]. Front Pharmacol, 2017, 8: 75.

[本文引用: 1]

WU F F, ZHOU L, JIN W D, et al. Anti-proliferative and apoptosis-inducing effect of theabrownin against non-small cell lung adenocarcinoma A549 cells[J]. Front Pharmacol, 2016, 7: 465.

[本文引用: 1]

JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 670-681.

[本文引用: 1]

XU J A, YAN B, ZHANG L, et al. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway[J]. Onco Targets Ther, 2020, 13: 8977-8987.

[本文引用: 3]

XU J A, XIAO X J, YAN B, et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression[J]. Cancer Cell Int, 2022, 22(1): 39.

[本文引用: 1]

BILLER L H, SCHRAG D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685.

[本文引用: 1]

CHEN X Q, HU Y X, WANG B J, et al. Characterization of theabrownins prepared from tea polyphenols by enzymatic and chemical oxidation and their inhibitory effect on colon cancer cells[J]. Front Nutr, 2022, 9: 849728.

[本文引用: 1]

LI T, YAN B, XIAO X J, et al. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin[J]. FASEB J, 2022, 36(8): e22426.

[本文引用: 1]

FU J Y, JIANG C X, WU M Y, et al. Theabrownin induces cell apoptosis and cell cycle arrest of oligodendroglioma and astrocytoma in different pathways[J]. Front Pharmacol, 2021, 12: 664003.

[本文引用: 1]

JIN W D, GU C Q, ZHOU L, et al. Theabrownin inhibits the cytoskeleton‑dependent cell cycle, migration and invasion of human osteosarcoma cells through NF‑κB pathway‑related mechanisms[J]. Oncol Rep, 2020, 44(6): 2621-2633.

[本文引用: 1]

JIN W D, ZHOU L, YAN B, et al. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway[J]. J Cell Mol Med, 2018, 22(9): 4423-4436.

[本文引用: 1]

ZHAO H, ZHANG M, ZHAO L, et al. Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea[J]. Int J Mol Sci, 2011, 12(3): 1862-1875.

[本文引用: 1]

许靖逸, 李祥龙, 李解, 等. 雅安藏茶茶褐素对60Co γ辐射损伤的防护作用[J]. 核技术, 2017, 40(4): 040301.

[本文引用: 1]

XU J Y, LI X L, LI J, et al. Protective effect of extracted theabrownines from Ya'an Tibetan tea on radiation damage in mice caused by 60Co γ-ray[J]. Nuclear Techniques, 2017, 40(4): 040301.

[本文引用: 1]

YANG W Q, REN D Y, SHAO H J, et al. Theabrownin from Fu brick tea improves ulcerative colitis by shaping the gut microbiota and modulating the tryptophan metabolism[J]. J Agric Food Chem, 2023, 71(6): 2898-2913.

[本文引用: 1]

HU S S, LI S, LIU Y, et al. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. J Agric Food Chem, 2021, 69(36): 10592-10605.

[本文引用: 1]

李春磊. 普洱茶水提物抗炎功效研究[D]. 长春: 长春理工大学, 2012.

[本文引用: 1]

LI C L. Effect of Pu-erh tea extracts on anti-flammation[D]. Changchun: Changchun University of Science and Technology, 2012.

[本文引用: 1]

LEI S W, ZHANG Z F, XIE G H, et al. Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose[J]. J Funct Foods, 2022, 89: 104941.

[本文引用: 1]

钟振威, 卢青, 丁世芳. 茶褐素对高脂喂养ApoE-/-小鼠主动脉粥样硬化作用及机制的研究[J]. 华南国防医学杂志, 2020, 34(3): 151-155.

[本文引用: 1]

ZHONG Z W, LU Q, DING S F. Study the effects and mechanism of theabrownin on aortic atherosclerosis in ApoE-/- mice fed with high-fat diet[J]. Military Medical Journal of South China, 2020, 34(3): 151-155.

[本文引用: 1]

ZHANG L, SHAO W F, YUAN L F, et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM)[J]. Food Chem, 2012, 135(4): 2222-2228.

[本文引用: 1]

/