上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (6): 768-774.doi: 10.3969/j.issn.1674-8115.2023.06.014
• 综述 • 上一篇
收稿日期:
2023-02-14
接受日期:
2023-05-30
出版日期:
2023-06-28
发布日期:
2023-06-28
通讯作者:
赵爱华
E-mail:wangjieyii@sjtu.edu.cn;zhah@sjtu.edu.cn
作者简介:
王洁仪(1996—),女,硕士生;电子信箱:wangjieyii@sjtu.edu.cn。
基金资助:
WANG Jieyi(), ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua()
Received:
2023-02-14
Accepted:
2023-05-30
Online:
2023-06-28
Published:
2023-06-28
Contact:
ZHAO Aihua
E-mail:wangjieyii@sjtu.edu.cn;zhah@sjtu.edu.cn
Supported by:
摘要:
茶对人体健康发挥多种重要的调节作用,其富含的茶色素类物质逐渐被发现具有重要的生物学活性。其中由茶黄素、茶红素等酚类物质进一步氧化聚合而成的茶褐素,主要存在于部分发酵的乌龙茶以及全发酵的红茶和黑茶中。茶褐素作为一种天然大分子物质,在肠道中不能直接被吸收入血发挥作用,但它可以与肠道菌接触,调节肠道菌群结构,维持肠道菌群稳态。茶褐素通过调节肠道菌群的结构和功能发挥多种生物学活性。茶褐素可通过抑制肝脏胆固醇生成、促进胆固醇和三酰甘油分解代谢、促进脂肪组织能量代谢,改善机体脂质代谢;可直接影响肠道对碳水化合物的吸收,改善糖代谢,维持血糖稳态;通过诱导肿瘤细胞凋亡和调节肿瘤细胞基因表达,发挥抗肿瘤的作用;另外茶褐素还能参与调节免疫细胞分化和多种炎症因子表达,发挥抗炎作用。该文总结了茶褐素在茶叶中的形成过程和提取方法,以及茶褐素结构组成的特点,并详细阐述了茶褐素对肠道菌群、脂质代谢、血糖稳态、肿瘤和炎症等方面的调节作用及其作用机制的研究进展。
中图分类号:
王洁仪, 郑丹, 郑晓皎, 贾伟, 赵爱华. 茶褐素生物学活性及其作用机制的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 768-774.
WANG Jieyi, ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua. Research progress in biological activities and mechanisms of theabrownin[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 768-774.
Animal model | Up-regulated gut microbiota | Down-regulated gut microbiota | Reference |
---|---|---|---|
Azoxymethane/dextran sodium sulphate-induced colorectal cancer in mice | Family: Rinoccaceae, Ruminococcaceae, Prevotellaceae Genus: Romboutsia, Anaeroplasma, Ruminococcus, Parabacteroides, Rikenellaceae RC9, Parvibacter, Alloprevotella | Family: Bacteroidceae Genus: Bacteroides | [ |
Mice with high-fat diet | Genus: Lactobacillus, Bacillus, Streptococcus, Lactococcus, Enterococcus | [ | |
Rats with high-sugar diet | Phylum: Bacteroidetes, Proteobacteria Genus: Alloprevotella, Coprostanoligenes group, Bacteroides, Prevotellaceae NK3B31 group, Desulfovibrio, Intestinimonas, Astipes, Bifidobacterium, Phascolarctobacterium, Ruminococcaceae UCG-010, Staphylococcus Species: Bacteroides acidifaciens, Staphylococcus saprophyticus subsp., Lactobacillus murinus | Phylum: Firmicutes Family: Prevotellaceae Ga6A1 group Genus: Lactobacillus, Tyzzerella | [ |
Mice with high-fat diet | Species: Clostridium scindens, Akmermansia muciniphila, Parabacteroides distasonis | [ | |
db/db Mice with high-fat diet | Species: Clostridioides difficile 42_27, Blautia coccoides, Firmicutes bacterium ASF500 | Species: Brevundimonas vesicularis | [ |
Mice with high-fat diet | Genus: Clostridium | [ | |
Rats with high-fat diet | Phylum: Bacteroidetes, Actinobacteria, Proteobacteria Species: Bacteroides thetaiotaomicron, Parabacteroides distasonis, Bacteroides acidifaciens, Lactobacillus murinus, Parabacteroides goldsteinii, Corynebacterium variabile | Species: Lachnospiraceae bacterium PG-426-CC-1, Brachyspira sp. NSH-25, Desulfovibrio sp. UNSW3caefatS, Bacteroides uniformis | [ |
Rats with high-fat diet | Family: Lachnospiraceae Genus: Lactobacillus, Akkermansia | Family: Ruminococcaceae Genus: Desulfovibrio | [ |
表1 茶褐素干预后显著变化的肠道菌群
Tab 1 Significantly differential gut microbiota after theabrownin intervention
Animal model | Up-regulated gut microbiota | Down-regulated gut microbiota | Reference |
---|---|---|---|
Azoxymethane/dextran sodium sulphate-induced colorectal cancer in mice | Family: Rinoccaceae, Ruminococcaceae, Prevotellaceae Genus: Romboutsia, Anaeroplasma, Ruminococcus, Parabacteroides, Rikenellaceae RC9, Parvibacter, Alloprevotella | Family: Bacteroidceae Genus: Bacteroides | [ |
Mice with high-fat diet | Genus: Lactobacillus, Bacillus, Streptococcus, Lactococcus, Enterococcus | [ | |
Rats with high-sugar diet | Phylum: Bacteroidetes, Proteobacteria Genus: Alloprevotella, Coprostanoligenes group, Bacteroides, Prevotellaceae NK3B31 group, Desulfovibrio, Intestinimonas, Astipes, Bifidobacterium, Phascolarctobacterium, Ruminococcaceae UCG-010, Staphylococcus Species: Bacteroides acidifaciens, Staphylococcus saprophyticus subsp., Lactobacillus murinus | Phylum: Firmicutes Family: Prevotellaceae Ga6A1 group Genus: Lactobacillus, Tyzzerella | [ |
Mice with high-fat diet | Species: Clostridium scindens, Akmermansia muciniphila, Parabacteroides distasonis | [ | |
db/db Mice with high-fat diet | Species: Clostridioides difficile 42_27, Blautia coccoides, Firmicutes bacterium ASF500 | Species: Brevundimonas vesicularis | [ |
Mice with high-fat diet | Genus: Clostridium | [ | |
Rats with high-fat diet | Phylum: Bacteroidetes, Actinobacteria, Proteobacteria Species: Bacteroides thetaiotaomicron, Parabacteroides distasonis, Bacteroides acidifaciens, Lactobacillus murinus, Parabacteroides goldsteinii, Corynebacterium variabile | Species: Lachnospiraceae bacterium PG-426-CC-1, Brachyspira sp. NSH-25, Desulfovibrio sp. UNSW3caefatS, Bacteroides uniformis | [ |
Rats with high-fat diet | Family: Lachnospiraceae Genus: Lactobacillus, Akkermansia | Family: Ruminococcaceae Genus: Desulfovibrio | [ |
1 | 孙芝杨. 世界三大饮料与“苦味”物质[J]. 饮料工业, 2009, 12(1): 8-9. |
SUN Z Y. The world's 3 most popular beverages and bitter substances[J]. Beverage Industry, 2009, 12(1): 8-9. | |
2 | 朱永兴, 姜爱芹. 咖啡、可可和茶的全球发展比较研究[J]. 茶叶科学, 2010, 30(6): 493-500. |
ZHU Y X, JIANG A Q. Comparation on the development of coffee, cocoa and tea of the world[J]. Journal of Tea Science, 2010, 30(6): 493-500. | |
3 | 杨佳怡, 连宇晗, 胡向东, 等. “品”茶: 浅谈茶叶中的有机化学成分[J]. 大学化学, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055. |
YANG J Y, LIAN Y H, HU X D, et al. Sipping tea: general introduction of the organic components in tea[J]. University Chemistry, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055. | |
4 | 吴德亮. 普洱藏茶[M]. 武汉: 华中科技大学出版社, 2019: 225-235. |
WU D L. Pu-erh tibet tea[M]. Wuhan: Huazhong University of Science & Technology Press, 2019: 225-235. | |
5 | WANG J Y, ZHENG D, HUANG F J, et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Front Pharmacol, 2022, 13: 875549. |
6 | HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971. |
7 | ZHEN Q C, LIANG Q J, WANG H C, et al. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice[J]. Front Endocrinol (Lausanne), 2023, 14: 1118925. |
8 | LEUNG H K M, LO E K K, EL-NEZAMI H. Theabrownin alleviates colorectal tumorigenesis in murine AOM/DSS model via PI3K/Akt/mTOR pathway suppression and gut microbiota modulation[J]. Antioxidants (Basel), 2022, 11(9): 1716. |
9 | JIA W, RAJANI C, LV A P, et al. Pu-erh tea: a review of a healthful brew[J]. J Tradit Chin Med Sci, 2022, 9(2): 95-99. |
10 | WANG Q P, GONG J S, CHISTI Y, et al. Production of theabrownins using a crude fungal enzyme concentrate[J]. J Biotechnol, 2016, 231: 250-259. |
11 | XU J Y, WANG W Y, LIANG X, et al. Inhibitory effect of the theabrownin and tea polysaccharide extracts of dark tea on lipase[J]. J Phys: Conf Ser, 2020, 1549: 032048. |
12 | MA W J, SHI Y L, YANG G Z, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chem, 2022, 375: 131877. |
13 | LIN F J, WEI X L, LIU H Y, et al. State-of-the-art review of dark tea: from chemistry to health benefits[J]. Trends Food Sci Technol, 2021, 109: 126-138. |
14 | XU J, WEI Y, HUANG Y, et al. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments[J]. Crit Rev Food Sci Nutr, 2022. DOI: 10.1080/10408398.2022.2093327. |
15 | GONG J S, ZHANG Q, PENG C X, et al. Curie-point pyrolysis-gas chromatography-mass spectroscopic analysis of theabrownins from fermented Zijuan tea[J]. J Anal Appl Pyrolysis, 2012, 97: 171-180. |
16 | 孟宪钰. 普洱熟茶加成儿茶素及茶褐素化学研究[D]. 昆明: 昆明理工大学, 2019. |
MENG X Y. Chemical research on addition catechins and theabrownins of Pu-erh tea[D]. Kunming: Kunming University of Science and Technology, 2019. | |
17 | 张云天, 姚晓玲, 鲁江, 等. 黑茶茶褐素的研究现状及进展[J]. 食品工业科技, 2017, 38(11): 395-399. |
ZHANG Y T, YAO X L, LU J, et al. Current research status and progress of the theabrownine in dark tea[J]. Science and Technology of Food Industry, 2017, 38(11): 395-399. | |
18 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
19 | 许军军, 蔡吓明, 林妹, 等. 益生菌对2型糖尿病患者降低炎症反应及改善糖代谢的研究[J]. 糖尿病新世界, 2022, 25(19): 126-129. |
XU J J, CAI X M, LIN M, et al. Study of probiotics on reducing inflammatory reaction and improving glucose metabolism in patients with type 2 diabetes mellitus[J]. Diabetes New World, 2022, 25(19): 126-129. | |
20 | YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food Funct, 2022, 13(4): 1921-1940. |
21 | KUANG J L, ZHENG X J, HUANG F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling[J]. Metabolites, 2020, 10(11): 475. |
22 | TAKEDA R, FURUNO Y, IMAI S, et al. Effect of powdered beverages containing Pu-erh tea extract on postprandial blood glucose levels[J]. Funct Foods Health Dis, 2019, 9(8): 532. |
23 | YUE S J, ZHAO D, PENG C X, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J]. Food Funct, 2019, 10(11): 7063-7080. |
24 | HOU Y, ZHANG Z F, CUI Y S, et al. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions[J]. Food Res Int, 2022, 162(Pt B): 112176. |
25 | LI H Y, HUANG S Y, XIONG R G, et al. Anti-obesity effect of theabrownin from dark tea in C57BL/6J mice fed a high-fat diet by metabolic profiles through gut microbiota using untargeted metabolomics[J]. Foods, 2022, 11(19): 3000. |
26 | 蒋慧颖, 马玉仙, 曾文治, 等. 茶黄素、茶红素与茶褐素对高脂饮食大鼠肠道菌群的影响[J]. 食品工业科技, 2018, 39(20): 274-279, 351. |
JIANG H Y, MA Y X, ZENG W Z, et al. Effects of theaflavins, thearubigins and theabrownine on intestinal flora in rats fed with high-fat diet[J]. Science and Technology of Food Industry, 2018, 39(20): 274-279, 351. | |
27 | LUO J, YANG H Y, SONG B L. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. |
28 | GONG J S, PENG C X, CHEN T, et al. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action[J]. J Food Sci, 2010, 75(6): H182-H189. |
29 | JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
30 | PENG C X, WANG Q P, LIU H R, et al. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS[J]. J Anal Appl Pyrolysis, 2013, 104: 226-233. |
31 | WANG Y, ZHAO A Q, DU H P, et al. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity[J]. J Agric Food Chem, 2021, 69(40): 11900-11911. |
32 | LI Y Z, TENG D, SHI X G, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997. |
33 | 徐湘婷, 王鹏, 罗绍忠, 等. 普洱熟茶茶褐素对2型糖尿病小鼠降糖作用研究[J]. 中国民族民间医药, 2015, 24(20): 9-10. |
XU X T, WANG P, LUO S Z, et al. Hypoglycemic effects of fermented puer tea extracts-theabrownins in mice of type 2 diabetes[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2015, 24(20): 9-10. | |
34 | HAO W X, WANG M, LV M X. The inhibitory effects of Yixing black tea extracts on α-glucosidase[J]. J Food Biochem, 2017, 41(1): e12269. |
35 | WANG Y W, ZHANG M Y, ZHANG Z Z, et al. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity[J]. J Sci Food Agric, 2017, 97(15): 5100-5106. |
36 | 聂坤伦, 何利, 速晓娟, 等. 雅安藏茶抑制α-淀粉酶的活性级分筛选与评价[J]. 食品科学, 2013, 34(9): 74-79. |
NIE K L, HE L, SU X J, et al. Screening and evaluation of α-amylase-inhibiting fractions extracted from Ya'an Tibetan tea[J]. Food Science, 2013, 34(9): 74-79. | |
37 | 赵丹, 张婷婷, 彭春秀, 等. 普洱茶茶褐素对高糖饮食大鼠糖脂代谢关键酶及组织切片的影响[J]. 食品工业科技, 2019, 40(15): 298-303. |
ZHAO D, ZHANG T T, PENG C X, et al. Effects of theabrowins extracted from Pu'er tea on key enzymes and tissue sections of glycolipid metabolism in rats with high sugar diet[J]. Science and Technology of Food Industry, 2019, 40(15): 298-303. | |
38 | WU E K, ZHANG T T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. Eur J Nutr, 2020, 59(5): 1937-1950. |
39 | YANG X H, LIU Z H, HUANG J N, et al. The effect of fraction 5 of theabrownin from Pu-erh tea on 3T3-L1 preadipocyte proliferation and differentiation[J]. J Food Nutr Res, 2014, 2(12): 1000-1006. |
40 | WANG Y Y, YUAN Y, WANG C P, et al. Theabrownins produced via chemical oxidation of tea polyphenols inhibit human lung cancer cells in vivo and in vitro by suppressing the PI3K/AKT/mTOR pathway activation and promoting autophagy[J]. Front Nutr, 2022, 9: 858261. |
41 | ZHOU L, WU F F, JIN W D, et al. Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism[J]. Front Pharmacol, 2017, 8: 75. |
42 | WU F F, ZHOU L, JIN W D, et al. Anti-proliferative and apoptosis-inducing effect of theabrownin against non-small cell lung adenocarcinoma A549 cells[J]. Front Pharmacol, 2016, 7: 465. |
43 | JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 670-681. |
44 | XU J A, YAN B, ZHANG L, et al. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway[J]. Onco Targets Ther, 2020, 13: 8977-8987. |
45 | XU J A, XIAO X J, YAN B, et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression[J]. Cancer Cell Int, 2022, 22(1): 39. |
46 | BILLER L H, SCHRAG D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. |
47 | CHEN X Q, HU Y X, WANG B J, et al. Characterization of theabrownins prepared from tea polyphenols by enzymatic and chemical oxidation and their inhibitory effect on colon cancer cells[J]. Front Nutr, 2022, 9: 849728. |
48 | LI T, YAN B, XIAO X J, et al. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin[J]. FASEB J, 2022, 36(8): e22426. |
49 | FU J Y, JIANG C X, WU M Y, et al. Theabrownin induces cell apoptosis and cell cycle arrest of oligodendroglioma and astrocytoma in different pathways[J]. Front Pharmacol, 2021, 12: 664003. |
50 | JIN W D, GU C Q, ZHOU L, et al. Theabrownin inhibits the cytoskeleton‑dependent cell cycle, migration and invasion of human osteosarcoma cells through NF‑κB pathway‑related mechanisms[J]. Oncol Rep, 2020, 44(6): 2621-2633. |
51 | JIN W D, ZHOU L, YAN B, et al. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway[J]. J Cell Mol Med, 2018, 22(9): 4423-4436. |
52 | ZHAO H, ZHANG M, ZHAO L, et al. Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea[J]. Int J Mol Sci, 2011, 12(3): 1862-1875. |
53 | 许靖逸, 李祥龙, 李解, 等. 雅安藏茶茶褐素对60Co γ辐射损伤的防护作用[J]. 核技术, 2017, 40(4): 040301. |
XU J Y, LI X L, LI J, et al. Protective effect of extracted theabrownines from Ya'an Tibetan tea on radiation damage in mice caused by 60Co γ-ray[J]. Nuclear Techniques, 2017, 40(4): 040301. | |
54 | YANG W Q, REN D Y, SHAO H J, et al. Theabrownin from Fu brick tea improves ulcerative colitis by shaping the gut microbiota and modulating the tryptophan metabolism[J]. J Agric Food Chem, 2023, 71(6): 2898-2913. |
55 | HU S S, LI S, LIU Y, et al. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. J Agric Food Chem, 2021, 69(36): 10592-10605. |
56 | 李春磊. 普洱茶水提物抗炎功效研究[D]. 长春: 长春理工大学, 2012. |
LI C L. Effect of Pu-erh tea extracts on anti-flammation[D]. Changchun: Changchun University of Science and Technology, 2012. | |
57 | LEI S W, ZHANG Z F, XIE G H, et al. Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose[J]. J Funct Foods, 2022, 89: 104941. |
58 | 钟振威, 卢青, 丁世芳. 茶褐素对高脂喂养ApoE-/-小鼠主动脉粥样硬化作用及机制的研究[J]. 华南国防医学杂志, 2020, 34(3): 151-155. |
ZHONG Z W, LU Q, DING S F. Study the effects and mechanism of theabrownin on aortic atherosclerosis in ApoE-/- mice fed with high-fat diet[J]. Military Medical Journal of South China, 2020, 34(3): 151-155. | |
59 | ZHANG L, SHAO W F, YUAN L F, et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM)[J]. Food Chem, 2012, 135(4): 2222-2228. |
[1] | 温亚锦, 何雯, 韩晓, 张晓波. 不同严重程度支气管哮喘儿童肠道菌群差异的探索性分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 655-664. |
[2] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
[3] | 刘芊若, 方子晨, 吴宇涵, 钟羡欣, 国沐禾, 贾洁. 肠道菌群及其代谢产物与妊娠期糖尿病相关性的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 641-647. |
[4] | 王婕, 吴慧, 卢凌鹏, 杨科峰, 祝捷, 周恒益, 姚蝶, 高雅, 冯宇婷, 刘玉红, 贾洁. 妊娠期糖尿病女性肠道菌群的变化特征及其与血糖、血脂和膳食的相关性[J]. 上海交通大学学报(医学版), 2022, 42(9): 1336-1346. |
[5] | 卢雨, 王昊, 巴乾. 肠道菌群在肝癌发生发展及治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 939-944. |
[6] | 蒋怡, 江平, 张明明, 房静远. 嗜黏蛋白阿克曼菌在肠道相关疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(10): 1490-1497. |
[7] | 刘梦珂, 纪濛濛, 程林, 黄金艳, 孙晓建, 赵维莅, 王黎. 黄芩苷抗肿瘤作用机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 246-250. |
[8] | 袁瑞雪, 傅迎美, 禹顺英. 辅助性T细胞17和调节性T细胞在抑郁症中的作用机制研究进展[J]. 上海交通大学学报(医学版), 2021, 41(10): 1384-1388. |
[9] | 周 铖1,孙鹏飞2,尹继瑶3,王阳阳1,肖海娟4, 5. 粪菌移植治疗炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(2): 267-. |
[10] | 储维薇,徐洁颖,李尚,翟君钰,杜艳芝. 脱氢表雄酮诱导的多囊卵巢综合征模型大鼠的肠道菌群研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 975-. |
[11] | 况俊良,郑晓皎,赵爱华,贾伟. 代谢性疾病中胆汁酸水平变化及相关治疗策略[J]. 上海交通大学学报(医学版), 2019, 39(6): 678-. |
[12] | 王蕾蕾1,陶晔璇2. 妊娠期糖尿病孕妇与健康孕妇的肠道菌群差异[J]. 上海交通大学学报(医学版), 2019, 39(11): 1300-. |
[13] | 吴 迪,齐 隽. 介孔硅基活性氧可控释放纳米体系及其抗肿瘤应用进展[J]. 上海交通大学学报(医学版), 2019, 39(11): 1329-. |
[14] | 宋月红,江海峰,彭素芳,赵 敏. 肠道菌群在抑郁症、焦虑症及物质使用障碍中的作用[J]. 上海交通大学学报(医学版), 2019, 39(10): 1199-. |
[15] | 张昕雨 1*,张璟2*,朱小强 1,曹颖颖 1,陈豪燕 1. 基于宏基因组学分析构建诊断大肠癌的肠道菌群标签[J]. 上海交通大学学报(医学版), 2018, 38(9): 1019-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||