1 |
JIANG Y H, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Prolif, 2021, 54(1): e12956.
|
2 |
吴惠一, 刘颖, 兰亚佳, 等. 中国绝经女性骨质疏松症患病率的Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 882-890.
|
|
WU H Y, LIU Y, LAN Y J, et al. Meta-analysis of the prevalence of osteoporosis in Chinese postmenopausal women[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8):882-890.
|
3 |
CUI L J, JACKSON M, WESSLER Z, et al. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among women in China: a simulation projection model from 2020 to 2040[J]. Arch Osteoporos, 2021, 16(1): 118.
|
4 |
LORENTZON M, JOHANSSON H, HARVEY N C, et al. Osteoporosis and fractures in women: the burden of disease[J]. Climacteric, 2022, 25(1): 4-10.
|
5 |
YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.
|
6 |
LEE W C, GUNTUR A R, LONG F X, et al. Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266.
|
7 |
DONAT A, KNAPSTEIN P R, JIANG S, et al. Glucose metabolism in osteoblasts in healthy and pathophysiological conditions[J]. Int J Mol Sci, 2021, 22(8): 4120.
|
8 |
LI T C, YAN Z Q, HE S S, et al. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1[J]. Oral Dis, 2021, 27(2): 290-300.
|
9 |
ANGIREDDY R, KAZMI H R, SRINIVASAN S, et al. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages[J]. FASEB J, 2019, 33(8): 9167-9181.
|
10 |
ZHANG Y, ROHATGI N, VEIS D J, et al. PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation[J]. J Bone Miner Res, 2018, 33(6): 1114-1125.
|
11 |
GUO L, CHEN K Z, YUAN J, et al. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC[J]. J Cell Physiol, 2018, 234(1): 581-594.
|
12 |
GUO Y S, CHI X P, WANG Y F, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther, 2020, 11(1): 245.
|
13 |
YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.
|
14 |
FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.
|
15 |
JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]. Arch Biochem Biophys, 2021, 702: 108698.
|
16 |
HARGREAVES M, SPRIET L L. Skeletal muscle energy metabolism during exercise[J]. Nat Metab, 2020, 2(9): 817-828.
|
17 |
JIN Y, SHEN Y, SU X, et al. The small GTPases Rab27b regulates mitochondrial fatty acid oxidative metabolism of cardiac mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 209.
|
18 |
PAL S, SINGH M, PORWAL K, et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function[J]. Eur J Pharmacol, 2021, 913: 174634.
|
19 |
LEE S Y, LONG F X. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12): 5573-5586.
|
20 |
KNOWLES H J. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function[J]. Sci Rep, 2020, 10(1): 21072.
|
21 |
SHARES B H, BUSCH M, WHITE N, et al. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation[J]. J Biol Chem, 2018, 293(41): 16019-16027.
|
22 |
KUSHWAHA P, ALEKOS N S, KIM S P, et al. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice[J]. Front Physiol, 2022, 13: 997358.
|
23 |
LI X M, CHEN Y, MAO Y X, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway[J]. Front Bioeng Biotechnol, 2020, 8: 625.
|
24 |
MA C, SUN Y N, PI C C, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2[J]. Front Cell Dev Biol, 2020, 8: 599376.
|
25 |
CAO X C, LUO D Q, LI T, et al. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts[J]. J Bone Miner Metab, 2020, 38(1): 27-37.
|
26 |
LIU H D, REN M X, LI Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1[J]. Free Radic Res, 2022, 56(1): 63-76.
|
27 |
KIM H N, PONTE F, NOOKAEW I, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors[J]. Sci Rep, 2020, 10(1): 11933.
|
28 |
ZENG Z P, ZHOU X C, WANG Y, et al. Mitophagy-a new target of bone disease[J]. Biomolecules, 2022, 12(10): 1420.
|
29 |
FENG X R, YIN W, WANG J L, et al. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2021, 246(1): 97-105.
|
30 |
FAN P, YU X Y, XIE X H, et al. Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells[J]. Life Sci, 2019, 229: 36-45.
|
31 |
GUO Y Y, JIA X, CUI Y Z, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41: 101915.
|
32 |
WANG X D, MA H D, SUN J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis[J]. Biol Trace Elem Res, 2022, 200(1): 298-307.
|
33 |
LAHA D, SARKAR J, MAITY J, et al. Polyphenolic compounds inhibit osteoclast differentiation while reducing autophagy through limiting ROS and the mitochondrial membrane potential[J]. Biomolecules, 2022, 12(9): 1220.
|
34 |
AOKI S, SHIMIZU K, ITO K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation[J]. Biochem Biophys Res Commun, 2020, 527(4): 874-880.
|
35 |
BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
|
36 |
RAJABZADEH N, FATHI E, FARAHZADI R. Stem cell-based regenerative medicine[J]. Stem Cell Investig, 2019, 6: 19.
|
37 |
QIU T, HE Y Y, ZHANG X, et al. Novel role of ER stress and mitochondria stress in serum-deprivation induced apoptosis of rat mesenchymal stem cells[J]. Curr Med Sci, 2018, 38(2): 229-235.
|
38 |
CHEN Y M, XIONG S B, ZHAO F H, et al. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells[J]. J Biomed Mater Res A, 2019, 107(6): 1253-1263.
|
39 |
YANG K D, PEI L, ZHOU S M, et al. Metformin attenuates H2O2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway[J]. Exp Ther Med, 2021, 22(5): 1316.
|
40 |
ZHENG D L, CUI C L, SHAO C, et al. Coenzyme Q10 inhibits RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells[J]. J Biochem Mol Toxicol, 2021, 35(7): e22778.
|
41 |
REN L, CHEN X D, CHEN X B, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 580070.
|
42 |
WAN M C, TANG X Y, LI J, et al. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes[J]. Acta Biomater, 2021, 136: 137-146.
|
43 |
FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.
|
44 |
ZHONG X Y, CUI P, CAI Y P, et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells[J]. Cell Metab, 2019, 29(4): 979-992.e4.
|
45 |
PAHWA H, KHAN M T, SHARAN K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis[J]. Mol Cell Biochem, 2020, 469(1/2): 109-118.
|
46 |
JEONG S, SEONG J H, KANG J H, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett, 2021, 595(1): 58-67.
|
47 |
NISHIKAWA K, TAKEGAMI H, SESAKI H. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation[J]. MicroPubl Biol, 2022. DOI: 10.17912/micropub.biology.000650.
|