上海交通大学学报(医学版), 2024, 44(2): 183-195 doi: 10.3969/j.issn.1674-8115.2024.02.004

论著 · 基础研究

甲基莲心碱调节SDF-1/CXCR4信号通路对糖尿病肾病的影响

王莹,1, 平立风2, 刘彤彤3, 刘珊珊4, 刘磊,1

1.山东第一医科大学第二附属医院内分泌科,泰安 271000

2.山东第一医科大学第二附属医院全科医学科,泰安 271000

3.山东第一医科大学第二附属医院心血管内科,泰安 271000

4.山东省泰安市中心医院妇科,泰安 271000

Effect of neferine on diabetic nephropathy by regulating SDF-1/CXCR4 signal pathway

WANG Ying,1, PING Lifeng2, LIU Tongtong3, LIU Shanshan4, LIU Lei,1

1.Endocrinology Department, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China

2.Medical Category, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China

3.Cardiovascular Department, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China

4.Department of Gynaecology, Tai'an City Central Hospital of Shandong Province, Tai'an 271000, China

通讯作者: 刘 磊,电子信箱:2625260425@qq.com

编委: 邢宇洋

收稿日期: 2023-04-13   接受日期: 2023-11-30  

基金资助: 山东省高等学校科技计划项目.  J17KA246

Corresponding authors: LIU Lei, E-mail:2625260425@qq.com.

Received: 2023-04-13   Accepted: 2023-11-30  

作者简介 About authors

王莹(1986—),女,副主任医师,硕士;电子信箱:taiyiwangying2009@163.com。 E-mail:taiyiwangying2009@163.com

摘要

目的·探讨甲基莲心碱(neferine,Nef)对糖尿病肾病(diabetic nephropathy,DN)大鼠肾组织的作用及其相关机制。方法·采用高脂饲料喂食联合腹腔注射链脲佐菌素的方法构建DN模型大鼠,并将造模成功的大鼠随机分为DN组、Nef(低、中、高)剂量组、Nef高剂量+通路拮抗剂(AMD3100)组,每组10只。同时,选10只普通大鼠作为正常组。检测6组大鼠的空腹血糖(fasting blood glucose,FBG)、24 h尿蛋白、血清糖化血红蛋白(glycosylated hemoglobin,HbA1c)、血清肌酐(serum creatinine,Scr)、尿素氮(blood urea nitrogen,BUN)水平及肾指数。分别采用苏木精-伊红(hematoxylin-eosin,H-E)染色、马松(Masson)染色观察6组大鼠的肾组织的病理变化。采用硫代巴比妥酸(thiobarbituric acid,TBA)法检测肾组织丙二醛(malondialdehyde,MDA)含量,分别采用水溶性四氮唑(water soluble tetrazolium,WST-1)法、钼酸铵法检测肾组织超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)的活性。分别采用实时荧光定量PCR(quantitative real-time PCR,qPCR)和蛋白质印迹法(Western blotting)检测肾组织中基质细胞衍生因子-1(stromal cell-derived factor-1,SDF-1)、CXC趋化因子受体4(CXC chemokine receptor 4,CXCR4)的mRNA以及蛋白表达。采用高糖(30 mmol/L葡萄糖)诱导大鼠肾小管上皮细胞NRK-52E,以建立DN细胞模型。将该细胞分为对照组、高糖(HG)组、HG+Nef(低、中、高)剂量组(即HG+Nef-L、M、H组)、HG+Nef-H+AMD3100组。分别采用WST-1法、钼酸铵法检测模型细胞中SOD、CAT活性,采用TBA法检测MDA含量,分别采用qPCR、Western blotting检测SDF-1、CXCR4的mRNA及蛋白表达,采用CCK-8法、流式细胞术检测细胞活力和凋亡率。结果·与DN组比较,Nef(低、中、高)剂量组和Nef高剂量+AMD3100组大鼠的FBG、24 h尿蛋白、HbA1c、Scr、BUN水平以及肾指数、MDA水平均较低,SDF-1、CXCR4的mRNA和蛋白表达以及SOD、CAT活性均较高(均P<0.05),肾组织病理损伤、纤维化程度有所减轻,且均呈剂量依赖性;AMD3100能减弱高剂量Nef对DN大鼠的肾保护作用。与HG组比较,HG+Nef-L、M、H组NRK-52E细胞的活力,SOD、CAT活性,SDF-1、CXCR4的mRNA和蛋白表达均较高,MDA含量及凋亡率均较低(均P<0.05);AMD3100可逆转Nef-H对NRK-52E细胞损伤的保护作用。结论·Nef可能通过激活SDF-1/CXCR4信号通路来控制DN大鼠的血糖水平并提高其抗氧化能力,从而发挥肾保护作用。

关键词: 糖尿病肾病 ; 甲基莲心碱 ; 肾脏 ; 基质细胞衍生因子-1/CXC趋化因子受体4信号通路

Abstract

Objective ·To investigate the effect of neferine (Nef) on renal tissues of diabetic nephropathy (DN) rats and its related mechanism. Methods ·DN model rats were constructed by feeding high-fat diet combined with intraperitoneal injection of streptozotocin, and the successfully constructed rats were randomly divided into DN group, Nef (low, medium and high) dose groups and Nef high-dose+pathway antagonist (AMD3100) group, with 10 rats in each group. At the same time, 10 common rats were selected as the normal group. The levels of fasting blood glucose (FBG), 24 h urinary protein, serum glycosylated hemoglobin (HbA1c), serum creatinine (Scr), blood urea nitrogen (BUN) and renal index of rats in the six groups were measured. Hematoxylin-eosin (H-E) and Masson staining were used to observe the pathological changes of renal tissues. The content of malondialdehyde (MDA) in renal tissues was determined by thiobarbituric acid (TBA) method, and the activities of superoxide dismutase (SOD) and catalase (CAT) in renal tissues were determined by water soluble tetrazolium (WST-1) method and ammonium molybdate method, respectively. The mRNA and protein expressions of stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) in renal tissues were detected by quantitative real-time PCR (qPCR) and Western blotting, respectively. Rat renal tubular epithelium cells NRK-52E were induced by high glucose (30 mmol/L glucose) to establish DN cell model. The cells were divided into control group, high glucose (HG) group, HG+Nef (low, medium and high) dose (i.e.HG+Nef-L, M and H) group, and HG+Nef-H +AMD3100 group. SOD and CAT activities were detected by WST-1 method and ammonium molybdate method, respectively. MDA content was detected by TBA method. The mRNA and protein expressions of SDF-1 and CXCR4 were detected by qPCR and Western blotting, respectively. CCK-8 method and flow cytometry were used to detect cell viability and apoptosis rate, respecti-vely. Results ·Compared with the DN group, the levels of FBG, 24 h urinary protein, HbA1c, Scr, BUN, renal index and MDA content in Nef (low, medium and high) dose groups and Nef high-dose+AMD3100 group were decreased, the mRNA and protein expressions of SDF-1 and CXCR4 were increased, and the activities of SOD and CAT were increased (all P<0.05). The degree of pathological damage and fibrosis of renal tissues was reduced; all of the above changes were dose-dependent. AMD3100 could weaken the renal protective effect of high-dose Nef on DN rats. Compared with the HG group, NRK-52E cell viability, SOD and CAT activities, and the mRNA and protein expressions of SDF-1 and CXCR4 were increased in HG+Nef-L, M and H groups, while apoptosis rate and MDA content were decreased (all P<0.05). AMD3100 could reverse the protective effect of Nef-H on NRK-52E cell damage. Conclusion ·Nef may control blood glucose levels on DN rats and improve antioxidant capacity by activating the SDF-1/CXCR4 signal pathway, playing a renal protective role.

Keywords: diabetic nephropathy (DN) ; neferine (Nef) ; renal ; stromal cell-derived factor-1/CXC chemokine receptor 4 signal pathway

PDF (5512KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王莹, 平立风, 刘彤彤, 刘珊珊, 刘磊. 甲基莲心碱调节SDF-1/CXCR4信号通路对糖尿病肾病的影响. 上海交通大学学报(医学版)[J], 2024, 44(2): 183-195 doi:10.3969/j.issn.1674-8115.2024.02.004

WANG Ying, PING Lifeng, LIU Tongtong, LIU Shanshan, LIU Lei. Effect of neferine on diabetic nephropathy by regulating SDF-1/CXCR4 signal pathway. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(2): 183-195 doi:10.3969/j.issn.1674-8115.2024.02.004

糖尿病是一种常见的代谢紊乱性疾病,由胰岛素分泌不足或胰岛素作用不足导致血糖水平升高引起。随着不健康生活方式和肥胖状态的日益加剧,糖尿病的发病率逐年递增,严重威胁着患者的生活质量。糖尿病肾病(diabetic nephropathy,DN)作为糖尿病的一种严重且常见的微血管并发症,可对肾脏组织造成不可逆损伤,是导致终末期肾病的主要原因之一,也是糖尿病患者死亡的主要原因1。由于DN的发病机制复杂,目前临床上仍缺乏特异性的治疗手段。近年来,虽有一些新的药物不断问世,如钠-葡萄糖共转运蛋白2抑制剂、胰高血糖素样肽1受体激动剂、二肽基肽酶-4抑制剂等,但其临床应用的效果还有待观察。因此,进一步探究DN的发病机制,寻找新的有效治疗靶点,并开发可以预防、延缓DN进展的新策略十分必要。

有研究2发现,氧化应激、炎症及糖脂代谢紊乱均参与了DN的发生与发展,可导致肾组织中肾小球、肾小管及系膜基质出现病理损伤和纤维化改变,增加尿蛋白排泄,诱导肾功能衰竭。基质细胞衍生因子-1(stromal cell-derived factor-1,SDF-1)又称CXC趋化因子配体12(CXC chemokine ligand-12,CXCL12),是趋化因子CXC亚家族的关键成员之一,其可与CXC趋化因子受体4(CXC chemokine receptor 4,CXCR4)相互作用,而后通过调节细胞增殖、分化、炎症、氧化应激等过程在肿瘤3、肾脏疾病4-5等发生、发展中发挥重要的调控作用。长期以来,中医药在国内被用于治疗糖尿病及其并发症,改善患者的生活质量等6。甲基莲心碱(neferine,Nef)是一种提取于睡莲科植物莲成熟种子的双苄基异喹啉类生物碱,具有抗氧化、抗炎和抗癌等多种药理特性7。已有研究证实,Nef可通过抑制氧化应激减轻由链脲佐菌素(streptozotocin,STZ)诱导的糖尿病大鼠视网膜损伤8;还可通过下调炎症因子水平、减少脂质过氧化、增强抗氧化能力来促进STZ诱导的糖尿病大鼠创面愈合9。而有关Nef对DN的影响,目前尚未有相关报道。基于此,本研究通过构建DN模型大鼠,探究Nef对DN大鼠肾组织的作用以及与SDF-1/CXCR4信号通路的作用关系,以期为DN的机制研究提供一定的参考依据。

1 对象与方法

1.1 实验对象

1.1.1 实验动物

70只SPF级雄性SD大鼠,6~7周龄,体质量为190~220 g,由北京北方艾特生物科技有限公司提供,生产许可证号:SCXK(京)2020-0005。大鼠饲养于山东第一医科大学实验动物房的标准笼中,使用许可证号:SYXK(鲁)2023-0012。饲养环境:温度(24±1)℃、相对湿度50%~60%、12 h/12 h光暗循环、无噪声。饲以标准饲料,自由摄食和饮水。

1.1.2 细胞及主要试剂

大鼠肾小管上皮细胞NRK-52E购自美国模式培养物集存库。STZ(Sigma,美国),Nef(上海源叶生物科技有限公司),CXCR4拮抗剂AMD3100(MCE,美国),大鼠尿蛋白酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)试剂盒(上海联迈生物工程有限公司),糖化血红蛋白(glycosylated hemoglobin,HbA1c)检测试剂盒(深圳市锦瑞生物科技股份有限公司),苏木精-伊红(hematoxylin-eosin,H-E)染色、马松(Masson)染色试剂盒(北京索莱宝科技有限公司),丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)比色法测试盒(武汉伊莱瑞特生物科技有限公司),TRIzol试剂、反转录试剂盒(Invitrogen,美国),QuantiNova SYBR Green PCR试剂盒(QIAGEN,德国),SDF-1、CXCR4、β-actin抗体和HRP标记羊抗兔IgG(Abcam,英国)。

1.2 实验方法

1.2.1 DN模型大鼠构建、分组

经适应性饲养7 d后,随机选取10只大鼠作为正常组(喂食标准饲料,腹腔注射0.1 mol/L柠檬酸盐缓冲液),其余大鼠用于DN模型构建10-11,即采用高脂饲料(60%标准饲料+1%胆固醇+10%猪油+20%蔗糖+9%蛋黄粉)喂食6周后,向其腹腔注射终浓度为35 mg/kg的STZ(即将STZ溶于0.1 mol/L柠檬酸盐缓冲液,新鲜配制成10 mg/mL STZ溶液,并经0.22 μm滤菌器过滤除菌,pH=4.5);3 d后行尾静脉采血并收集大鼠的24 h尿液,若血样中空腹血糖(fasting blood glucose,FBG)水平≥16.7 mmol/L且24 h尿蛋白含量≥20 mg,则认为DN模型构建成功12

取50只DN模型大鼠,将其随机分为DN组、Nef(低、中、高)剂量组和Nef高剂量+通路拮抗剂(AMD3100)组,每组10只。其中,Nef(低、中、高)剂量组大鼠分别于腹腔注射2.5、5、10 mg/kg Nef13,Nef高剂量+AMD3100组大鼠于腹腔注射10 mg/kg Nef和1 mg/kg AMD310014,DN组、正常组大鼠则在同一时间于腹腔注射等量的生理盐水。所有组别大鼠均给药1次/d,连续6周。

1.2.2 大鼠FBG、24 h尿蛋白水平检测

于给药前、后采集6组大鼠的尾静脉血,并使用血糖仪检测血样中FBG水平。同时,使用代谢笼收集大鼠24 h尿液,采用ELISA检测其24 h尿蛋白水平。具体操作依据相关说明书进行。

1.2.3 大鼠血清HbA1c、肌酐、尿素氮水平及肾指数检测

给药后,向6组大鼠腹腔注射3%戊巴比妥钠进行麻醉。于腹主动脉取血4 mL,经1 000×g离心10 min后收集上层血清。采用免疫散射比浊法检测血清HbA1c水平,采用全自动生化分析仪检测血清肌酐(serum creatinine,Scr)、尿素氮(blood urea nitrogen,BUN)水平,具体操作严格参照相关说明书进行。同时,断头处死大鼠,小心摘取双肾(将右肾冻存于-80 ℃冰箱以备后用),称量肾脏质量后计算肾指数,公式为:肾指数=肾脏质量/体质量×100%。

1.2.4 大鼠肾组织病理学变化观察

将部分新鲜左肾组织置于4%多聚甲醛中,固定24 h后经脱水、石蜡包埋,并于切片机上制成4 µm的切片。再经酒精梯度脱水后,分别参照H-E染色、Masson染色试剂盒说明对切片进行染色,而后行梯度乙醇脱水、中性树胶封片,使用光学显微镜观察肾组织病理学变化并采集图像。

1.2.5 大鼠肾组织中MDA含量及SOD、CAT活性检测

使用生理盐水将余下的新鲜左肾组织制备成10%组织匀浆,于1 000×g离心10 min后收集上清液,采用BCA法检测上清液中的蛋白浓度。而后,采用硫代巴比妥酸(thiobarbituric acid,TBA)法检测MDA含量,采用水溶性四氮唑(water soluble tetrazolium,WST-1)法、钼酸铵法分别检测SOD和CAT活性,具体操作步骤参见相关说明书。

1.2.6 实时荧光定量PCR检测大鼠肾组织中Sdf-1Cxcr4 mRNA表达

取100 mg右肾组织,经TRIzol试剂提取总RNA后将其反转录为cDNA,并以其为模板,根据QuantiNova SYBR Green PCR试剂盒说明书进行实时荧光定量PCR(quantitative real-time PCR,qPCR)扩增,获取循环阈值(CT值)。以β-actin为内参基因,正常组为对照,采用2-∆∆CT法计算各组大鼠肾组织中Sdf-1Cxcr4的相对表达量。具体引物信息见表1

表 1   qPCR引物序列

Tab 1  Primer sequence for qPCR

PrimerForward sequence (5'→3')Reverse sequence (5'→3')
Sdf-1GACGGTAAGCCAGTCAGCCTCAGGTACCTCTGGATCCACT
Cxcr4ACGCACGACGTCTTCCAGTACCACCTGGTTCAACTCACTCC
β-actinGCACCACACCTTCTACAATGTGCTTGCTGATCCACATCTG

新窗口打开| 下载CSV


1.2.7 蛋白质印迹法检测大鼠肾组织中SDF-1、CXCR4表达

采用组织裂解液对100 mg右肾组织行充分裂解后,提取总蛋白并用BCA法检测蛋白的浓度。而后,采用蛋白质印迹法(Western blotting)对SDF-1、CXCR4的表达进行检测,具体操作参见说明书。其中,使用的一抗为SDF-1(工作浓度为1∶1 000)、CXCR4(工作浓度为1∶1 000)、β-actin(工作浓度为1∶100),其对应的二抗为HRP标记羊抗兔IgG(工作浓度为1∶5 000)。

1.2.8 细胞培养、分组及相关指标检测

于37 ℃、5%CO2培养箱中,采用含10%胎牛血清、1%青霉素-链霉素的DMEM培养基对NRK-52E细胞进行培养。待细胞生长至80%~90%时进行传代,取第3代对数生长期的细胞行后续实验。

将上述NRK-52E细胞分为对照组(Control组)、高糖组(HG组)、HG+Nef(低、中、高)剂量组(HG+Nef-L、M、H组)和HG+Nef-H+AMD3100组;其中,Control组细胞采用5.5 mmol/L葡萄糖处理24 h,HG组细胞采用30 mmol/L葡萄糖处理24 h15(以诱导体外DN状态),HG+Nef-L、M、H组细胞采用30 mmol/L葡萄糖及不同浓度Nef(依次为2、4、8 μmol/L)处理 24 h16,HG+Nef-H+AMD3100组细胞采用30 mmol/L葡萄糖、8 μmol/L Nef和10 μmol/L AMD3100处理24 h17

而后,收集各组细胞并对其MDA含量、SOD和CAT活性、SDF-1和CXCR4的mRNA及蛋白表达进行检测,步骤同“1.2.5”“1.2.6”“1.2.7”。

1.2.9 CCK-8法检测细胞活力

分别将上述各组NRK-52E细胞以3×104/孔接种至96孔板,并向其中添加10%的CCK-8试剂,孵育1.5 h后使用酶标仪检测细胞于450 nm波长处的吸光度即D(450 nm)。

1.2.10 流式细胞术检测细胞凋亡水平

收集“1.2.8”部分中处理后的各组细胞,经磷酸盐缓冲液洗涤3次后重悬。取200 μL细胞悬液,向其中添加5 μL异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记的膜联蛋白V(Annexin V)和10 μL碘化丙啶,避光孵育10 min。而后,于流式细胞仪上对上述细胞的凋亡水平进行分析。

1.3 统计学分析

使用SPSS 25.0软件对数据进行统计分析。定量资料以x±s表示,多组间比较采用单因素方差分析,进一步的两两组间比较采用SNK-q法。P<0.05表示差异具有统计学意义。

2 结果

2.1 大鼠FBG24 h尿蛋白水平比较

对大鼠FBG、24 h尿蛋白水平进行检测,结果(图1)显示:①给药前,与正常组比较,DN组、Nef(低、中、高)剂量组和Nef高剂量+ AMD3100组大鼠的FBG、24 h尿蛋白水平均较高(均P<0.05),即FBG水平≥16.7 mmol/L且24 h尿蛋白含量≥20 mg,提示已成功构建DN大鼠模型。②给药后,与正常组比较,DN组大鼠的FBG、24 h尿蛋白水平均较高(均P<0.05);腹腔注射Nef可降低DN大鼠FBG、24 h尿蛋白水平,且呈一定的剂量依赖性;而AMD3100处理则可挽救由高剂量Nef引起的DN大鼠FBG、24 h尿蛋白水平的下降。

图1

图1   各组大鼠FBG24 h尿蛋白水平比较

Note: A. FBG level. B. 24 h urinary protein level. P=0.000, compared with the normal group; P=0.000, compared with the DN group; P=0.000, compared with the Nef low-dose group; P=0.000, compared with the Nef medium-dose group; P=0.000, compared with the Nef high-dose group.

Fig 1   Comparison of the FBG and 24 h urinary protein levels of rats in each group


2.2 大鼠血清HbA1cScrBUN水平及肾指数比较

对大鼠血清HbA1c、Scr、BUN水平及肾指数进行分析,结果(图2)显示:与正常组比较,DN组大鼠的血清HbA1c、Scr、BUN水平及肾指数均较高(均P<0.05);腹腔注射Nef可降低DN大鼠的血清HbA1c、Scr、BUN水平及肾指数,即可改善DN大鼠的肾功能且具有一定的剂量依赖性;而AMD3100处理则可减弱由高剂量Nef带来的DN大鼠肾功能的改善作用。

图2

图2   各组大鼠血清HbA1cScrBUN水平及肾指数比较

Note: A. Serum HbA1c levels. B. Scr levels. C. BUN levels. D. Renal index. P=0.000, compared with the normal group; P=0.000, compared with the DN group; P=0.000, compared with the Nef low-dose group; P=0.000, compared with the Nef medium-dose group; P=0.000, compared with the Nef high-dose group.

Fig 2   Comparison of the serum HbA1c, Scr, BUN levels and renal index of rats in each group


2.3 大鼠肾组织病理学变化

大鼠肾组织的H-E染色、Masson染色的结果(图34)显示:正常组大鼠的肾小球、肾小管及系膜基质的结构、形态均较正常,几乎无蓝色胶原纤维;DN组大鼠的肾小球肥大,肾小管上皮细胞发生空泡样变性,系膜基质增生同时存在大量蓝色胶原纤维;腹腔注射Nef可抑制蓝色胶原纤维的产生,减轻DN大鼠的肾小球、肾小管及系膜基质的损伤,且具有一定的剂量依赖性;而AMD3100处理则可减弱由高剂量Nef带来的DN大鼠肾组织损伤的改善作用。

图3

图3   各组大鼠肾组织的病理形态观察 (H-E staining, ×200)

Note: Blue arrows indicate glomerular hypertrophy; yellow arrows indicate vacuolar degeneration of renal tubular epithelial cells.

Fig 3   Observation of the pathological morphology of the renal tissues of rats in each group (H-E staining, ×200)


图4

图4   各组大鼠肾组织的纤维化观察 (Masson staining, ×200)

Fig 4   Observation of renal tissue fibrosis of rats in each group (Masson staining, ×200)


2.4 大鼠肾组织中MDA含量及SODCAT活性比较

对大鼠肾组织中的MDA含量、SOD和CAT活性进行分析,结果(图5)显示:与正常组比较,DN组大鼠肾组织中MDA含量较高,SOD、CAT活性较低(均P<0.05);腹腔注射Nef可降低DN大鼠肾组织中的MDA含量,增加SOD、CAT活性,即抑制DN大鼠肾组织氧化应激且呈一定的剂量依赖性;而AMD3100处理则可减弱高剂量Nef对DN大鼠肾组织氧化应激的抑制作用。

图5

图5   各组大鼠肾组织中MDA含量及SODCAT活性比较

Note: A. MDA content. B. SOD activity. C. CAT activity. P=0.000, compared with the normal group; P=0.000, compared with the DN group; P=0.000, compared with the Nef low-dose group; P=0.000, compared with the Nef medium-dose group; P=0.000, compared with the Nef high-dose group.

Fig 5   Comparison of MDA content and SOD, CAT activity in renal tissues of rats in each group


2.5 大鼠肾组织中 Sdf-1Cxcr4 mRNA表达比较

对大鼠肾组织中的Sdf-1Cxcr4 mRNA的表达进行分析,结果(图6)显示:与正常组比较,DN组大鼠肾组织中Sdf-1Cxcr4 mRNA表达较高(均P<0.05);腹腔注射Nef可进一步增加Sdf-1Cxcr4 mRNA的表达,即可激活DN大鼠肾组织中SDF-1/CXCR4信号通路且具有一定的剂量依赖性;而AMD3100处理则可减弱高剂量Nef对DN大鼠肾组织中SDF-1/CXCR4信号通路的激活作用。

图6

图6   各组大鼠肾组织中 Sdf-1Cxcr4 mRNA表达比较

Note: A. Relative expression of Sdf-1 mRNA. B. Relative expression of Cxcr4 mRNA. P=0.000, compared with the normal group; P=0.000, compared with the DN group; P=0.000, compared with the Nef low-dose group; P=0.000, compared with the Nef medium-dose group; P=0.000, compared with the Nef high-dose group.

Fig 6   Comparison of Sdf-1 and Cxcr4 mRNA expression in renal tissues of rats in each group


2.6 大鼠肾组织中SDF-1CXCR4蛋白表达比较

对大鼠肾组织中的SDF-1、CXCR4蛋白的表达进行检测,结果(图7)显示:与正常组比较,DN组大鼠肾组织中SDF-1、CXCR4蛋白的表达较高(均P<0.05);腹腔注射Nef可进一步增加SDF-1、CXCR4蛋白的表达,即能够激活DN大鼠肾组织中SDF-1/CXCR4信号通路且具有一定的剂量依赖性;而AMD3100处理则可减弱高剂量Nef对DN大鼠肾组织中SDF-1/CXCR4信号通路的激活作用。

图7

图7   各组大鼠肾组织中SDF-1CXCR4蛋白表达

Note: A. Western blotting analysis of SDF-1 and CXCR4 protein expression. B/C. Statistical analysis of relative expression of SDF-1 protein (B) and CXCR4 protein (C). P=0.000, compared with the normal group; P=0.000, compared with the DN group; P=0.000, compared with the Nef low-dose group; P=0.000, compared with the Nef medium-dose group; P=0.000, compared with the Nef high-dose group.

Fig 7   SDF-1 and CXCR4 protein expression in renal tissues of rats in each group


2.7 NRK-52E细胞的MDA含量及SODCAT活性比较

对NRK-52E细胞的MDA含量、SOD和CAT活性进行分析,结果(图8)显示:与Control组比较,HG组NRK-52E细胞的MDA含量较高,SOD、CAT活性较低(均P<0.05);Nef处理可降低HG组细胞的MDA含量,增加SOD、CAT活性,即抑制NRK-52E细胞氧化应激且具有一定的剂量依赖性;而AMD3100处理则可减弱Nef-H对NRK-52E细胞氧化应激的抑制作用。

图8

图8   各组NRK-52E细胞中MDA含量及SODCAT活性比较

Note: A. MDA content. B. SOD activity. C. CAT activity. P=0.000, compared with the control group; P=0.000, compared with the HG group; P=0.000, compared with the HG+Nef-L group; P=0.000, compared with the HG+Nef-M group; P=0.000, compared with the HG+Nef-H group.

Fig 8   Comparison of MDA content and SOD, CAT activity in NRK-52E cells of each group


2.8 NRK-52E细胞的SDF-1CXCR4表达比较

对NRK-52E细胞的SDF-1、CXCR4表达进行分析,结果(图910)显示,与Control组比较,HG组NRK-52E细胞中SDF-1、CXCR4 的mRNA及蛋白表达较高(均P<0.05);Nef处理可进一步增加HG组细胞的SDF-1、CXCR4的mRNA及蛋白表达,即能够激活NRK-52E细胞中SDF-1/CXCR4信号通路且具有一定的剂量依赖性;而AMD3100处理则可减弱Nef对NRK-52E细胞中SDF-1/CXCR4信号通路的激活作用。

图9

图9   各组NRK-52E细胞中 Sdf-1Cxcr4 mRNA表达比较

Note: A. Relative expression of Sdf-1 mRNA. B. Relative expression of Cxcr4 mRNA. P=0.000, compared with the control group; P=0.000, compared with the HG group; P=0.000, compared with the HG+Nef-L group; P=0.000, compared with the HG+Nef-M group; P=0.000, compared with the HG+Nef-H group.

Fig 9   Comparison of Sdf-1 and Cxcr4 mRNA expression in NRK-52E cells of each group


图10

图10   各组NRK-52E细胞中SDF-1CXCR4蛋白表达

Note: A. Western blotting analysis of SDF-1 and CXCR4 protein expression. B/C. Statistical analysis of relative expression of SDF-1 protein (B) and CXCR4 protein (C). P=0.000, compared with the control group; P=0.000, compared with the HG group; P=0.000, compared with the HG+Nef-L group; P=0.000, compared with the HG+Nef-M group; P=0.000, compared with the HG+Nef-H group.

Fig 10   SDF-1 and CXCR4 protein expression in NRK-52E cells of each group


2.9 NRK-52E细胞的活力及凋亡水平比较

对NRK-52E细胞的活力及凋亡水平进行分析,结果(图11)显示:与Control组比较,HG组NRK-52E细胞的活力下降、凋亡率上升(均P<0.05);Nef处理可增加NRK-52E细胞的活力、降低其凋亡率,即抑制NRK-52E细胞损伤且具有一定的剂量依赖性;而AMD3100处理则可减弱Nef对NRK-52E细胞损伤的抑制作用。

图11

图11   各组NRK-52E细胞的活力及凋亡率比较

Note: A. Detection of cell apoptosis by flow cytometry. B. Statistical analysis of cell viability. C. Statistical analysis of cell apoptosis rate. P=0.000, compared with the control group; P=0.000, compared with the HG group; P=0.000, compared with the HG+Nef-L group; P=0.000, compared with the HG+Nef-M group; P=0.000, compared with the HG+Nef-H group.

Fig 11   Comparison of NRK-52E cell activity and apoptosis rate in each group


3 讨论

DN是一种以持续性蛋白尿、肾功能进行性下降为特征的临床综合征,可严重影响人们的生命健康18。既往研究显示,Nef具有较强的抗癌、神经保护等作用19-20,还能对糖尿病相关并发症(如视网膜病变、足溃疡等)表现出一定的治疗潜力7-8。而目前有关Nef能否在DN中发挥治疗作用,尚有待探究。

研究21发现,HbA1c可反映患者取血前8~12周的平均血糖水平,且血糖控制与DN的发生密切相关;该研究还发现HbA1c和FBG水平在DN患者血清中均较高,认为其可作为DN的诊断标准。另有研究22-23报道,HbA1c、FBG水平升高可能是诱发糖尿病微血管病变的影响因素,且糖尿病患者的HbA1c水平与肾损害程度呈正相关。本研究发现,Nef可降低DN大鼠的FBG、HbA1c水平,提示Nef对DN大鼠有一定的血糖控制作用。同时,Nef还对肾脏具有一定的保护作用,即Nef可能通过抑制核因子κB(nuclear factor kappa B,NF-κB)通路的激活来减轻急性肾损伤小鼠的肾功能丧失和病理损伤24。蛋白尿是DN的常见临床表现,24 h尿蛋白的多少不仅能反映肾脏损伤程度,还可作为考量DN患者病程进展的主要指标之一18。本研究发现,Nef可通过降低24 h尿蛋白水平、肾功能指标(Scr、BUN)水平和肾指数来保护DN大鼠的肾功能、减轻其肾损伤,这也再次证实了Nef具有肾脏保护作用。

有研究25显示,DN诱发的肾脏损害与高血糖导致的氧化应激增加密切相关;这是由于高血糖可通过增加活性氧(reactive oxygen,ROS)水平来激活氧化应激反应,进而诱导内皮细胞发生凋亡、炎症、自噬和纤维化,最终导致肾脏组织损伤和功能异常26。MDA、SOD、CAT是评价氧化应激水平的标志物,抗氧化酶SOD、CAT活性的降低及脂质过氧化产物MDA水平的增加可加重DN的肾损伤26。在本研究中,Nef可降低DN大鼠肾组织中MDA的含量,增加SOD、CAT的活性,提示Nef可能通过控制血糖并提高肾组织抗氧化能力,减轻肾组织病理损伤,进而发挥肾脏保护作用。TANG等27发现,Nef可提高细胞的抗氧化能力、降低ROS水平,并通过阻断ROS/NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)/含半胱氨酸的天冬氨酸蛋白水解酶1(cysteinyl aspartate specific proteinase 1,caspase-1)信号通路抑制由脂多糖-腺嘌呤核苷三磷酸(lipopolysaccharide-adenosine triphosphate,LPS-ATP)诱导的内皮细胞焦亡,这也为慢性肾病的治疗提供了证据。本研究的体外实验发现,HG处理的NRK-52E细胞凋亡率、MDA水平增加,SOD、CAT活性下降,提示HG可触发NRK-52E细胞的氧化应激和凋亡;而Nef处理则可有效降低HG对NRK-52E细胞的上述改变,这与本研究的体内实验数据一致。综合上述结果我们发现,Nef具有通过抑制氧化应激来减轻肾损伤的潜力。

作为SDF-1唯一的特异性受体,CXCR4广泛表达于多种组织和器官中;当组织发生缺氧、缺血等损伤时,SDF-1的表达会增加,以促进受损组织和细胞的修复28。SIDDIQI等29发现,CXCR4与其配体SDF-1的结合可促进糖尿病大鼠肾小管细胞的存活。同时,高水平的SDF-1可通过抗氧化、抗纤维化及改善不佳的肾脏血流动力学对DN小鼠发挥保护作用30。在本研究中,Nef可上调DN大鼠肾组织和NRK-52E细胞中SDF-1、CXCR4的mRNA和蛋白表达,表明Nef对DN的肾保护作用可能与促进SDF-1/CXCR4信号通路的激活有关。AMD3100是一种不可逆拮抗剂,能够抑制CXCR4与SDF-1的结合。相关研究显示,AMD3100在一定程度上可治疗肾损伤1331,且持续行AMD3100治疗会加速肾功能的下降并对肾组织的修复产生不良影响32-33。为进一步验证SDF-1/CXCR4信号通路是否参与Nef对DN的肾保护作用,本研究使用CXCR4拮抗剂AMD3100阻断SDF-1/CXCR4信号通路,结果显示AMD3100能减弱高剂量Nef对DN大鼠的肾保护作用,继而证实了我们的猜测。

综上所述,Nef可能通过促进SDF-1/CXCR4信号通路的激活来控制血糖水平、提高抗氧化能力,进而改善DN。本研究为DN治疗靶点设计和药物选择提供了新思路,同时也为Nef应用于DN的防治提供了理论依据。由于CXCR4拮抗剂AMD3100对Nef保护肾脏免受损伤的逆转作用不是完全的,故而推测可能存在其他抗氧化途径[如核转录因子红系2相关因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)]参与这一过程,但尚需进一步分析。此外,血糖的升高与胰岛功能减退有关,而胰岛素抵抗会影响胰岛的功能。有研究发现Nef可增加胰岛素抵抗的HepG2细胞的葡萄糖消耗量,从而减轻胰岛素抵抗34;继而推测Nef的降血糖机制可能与降低胰岛素抵抗有关。后续我们会就此开展深入的验证。

作者贡献声明

王莹、刘彤彤、刘珊珊参与实验设计,平立风、刘磊参与论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by WANG Ying, LIU Tongtong and LIU Shanshan. The manuscript was drafted and revised by PING Lifeng and LIU Lei. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

SAGOO M K, GNUDI L. Diabetic nephropathy: an overview[J]. Methods Mol Biol, 2020, 2067: 3-7.

[本文引用: 1]

SAMSU N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment[J]. Biomed Res Int, 2021, 2021: 1497449.

[本文引用: 1]

SHI Y, RIESE D J 2nd, SHEN J Z. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer[J]. Front Pharmacol, 2020, 11: 574667.

[本文引用: 1]

SONG A N, JIANG A N, XIONG W, et al. The role of CXCL12 in kidney diseases: a friend or foe?[J]. Kidney Dis (Basel), 2021, 7(3): 176-185.

[本文引用: 1]

ZHANG Q Z, HE L, DONG Y, et al. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway[J]. FASEB J, 2020, 34(6): 7500-7519.

[本文引用: 1]

ZHANG T T, JIANG J G. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications[J]. Expert Opin Investig Drugs, 2012, 21(11): 1625-1642.

[本文引用: 1]

BHARATHI PRIYA L, HUANG C Y, HU R M, et al. An updated review on pharmacological properties of neferine: a bisbenzylisoquinoline alkaloid from Nelumbo nucifera[J]. J Food Biochem, 2021, 45(12): e13986.

[本文引用: 2]

CEVIK M, GOBEKA H H, AYDEMIR O. Effects of neferine on retinal tissue in experimental diabetic rat model[J]. Int Ophthalmol, 2023, 43(1): 249-260.

[本文引用: 2]

LI J, CHOU H Y, LI L, et al. Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and Nrf-2 pathway[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 96-106.

[本文引用: 1]

李莉, 李松, 曹萌, 等. MiR-146a-5p对高脂饮食/链脲佐菌素诱导的糖尿病肾病大鼠肾组织的保护作用[J]. 解剖学杂志, 2021, 44(2): 108-113.

[本文引用: 1]

LI L, LI S, CAO M, et al. Protective effect of miR-146a-5p on renal tissue in high-fat diet/streptozotocin-induced diabetic nephropathy rats[J]. Chinese Journal of Anatomy, 2021, 44(2): 108-113.

[本文引用: 1]

SINGH L, RANA S, MEHAN S. Role of adenylyl cyclase activator in controlling experimental diabetic nephropathy in rats[J]. Int J Physiol Pathophysiol Pharmacol, 2018, 10(5): 144-153.

[本文引用: 1]

张培培, 夏虹, 鲁科达, 等. 加味黄风汤对糖尿病肾病模型大鼠肾组织8-OHdG表达的影响[J]. 浙江中西医结合杂志, 2020, 30(8): 618-622, 696.

[本文引用: 1]

ZHANG P P, XIA H, LU K D, et al. Effect of modified Huangfeng decoction on the expression of 8-OHdG in renal tissue of diabetic nephropathy rats[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2020, 30(8): 618-622, 696.

[本文引用: 1]

WANG Y Y, WANG S Z, WANG R, et al. Neferine exerts antioxidant and anti-inflammatory effects on carbon tetrachloride-induced liver fibrosis by inhibiting the MAPK and NF-κB/IκBα pathways[J]. Evid Based Complement Alternat Med, 2021, 2021: 4136019.

[本文引用: 2]

叶泽华, 夏煜琦, 李柏均, 等. CXCR4在草酸钙晶体致肾损伤及纤维化中的作用和机制[J]. 中华泌尿外科杂志, 2022, 43(4): 285-290.

[本文引用: 1]

YE Z H, XIA Y Q, LI B J, et al. The role and mechanism of CXCR4 in renal injury and fibrosis caused by calcium oxalate crystals[J]. Chinese Journal of Urology, 2022, 43(4): 285-290.

[本文引用: 1]

TAN H T, CHEN J X, LI Y C, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways[J]. Mol Med, 2022, 28(1): 58.

[本文引用: 1]

BHARATHI PRIYA L, BASKARAN R, HUANG C Y, et al. Neferine modulates IGF-1R/Nrf2 signaling in doxorubicin treated H9c2 cardiomyoblasts[J]. J Cell Biochem, 2018, 119(2): 1441-1452.

[本文引用: 1]

李建坤, 苏红宁. CXCR4对PDGF-BB诱导的血管平滑肌细胞增殖、迁移的影响及白藜芦醇的抑制作用[J]. 中药新药与临床药理, 2019, 30(7): 766-770.

[本文引用: 1]

LI J K, SU H N. The role of CXCR4 in proliferation and migration of vascular smooth muscle cells and the inhibition of resveratrol[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2019, 30(7): 766-770.

[本文引用: 1]

SELBY N M, TAAL M W. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): 3-15.

[本文引用: 2]

LI S J, ZHANG Y Y, ZHANG J, et al. Neferine exerts ferroptosis-inducing effect and antitumor effect on thyroid cancer through Nrf2/HO-1/NQO1 inhibition[J]. J Oncol, 2022, 2022: 7933775.

[本文引用: 1]

LIN T Y, HUNG C Y, CHIU K M, et al. Neferine, an alkaloid from lotus seed embryos, exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats[J]. Int J Mol Sci, 2022, 23(8): 4130.

[本文引用: 1]

YOUSIF HUSSIN ALIMAM H, ABDELATEIF HUSSEIN W, IBRAHIM S, et al. Blood glucose, HbA1c level, and its correlation with VEGF-A (+405G/C) polymorphism as biomarker predicts the risk of retinopathy and nephropathy in type 2 diabetic patients[J]. Rep Biochem Mol Biol, 2022, 11(3): 421-429.

[本文引用: 1]

李燕菲. 糖尿病患者HbA1c、β2-MG、α1-MG、尿微量白蛋白/肌酐变化及与早期肾功能损害的关系分析[J]. 医学理论与实践, 2023, 36(2): 293-295.

[本文引用: 1]

LI Y F. Changes of HbA1c, β2-MG, α1-MG, urinary microalbumin/creatinine and their relationship with early renal function impairment in patients with diabetes mellitus[J]. The Journal of Medical Theory and Practice, 2023, 36(2): 293-295.

[本文引用: 1]

司珩, 李梦檀. HbAlc、CK及FBG联合检测在糖尿病微血管病变诊断中的应用[J]. 医药论坛杂志, 2021, 42(2): 138-140, 145.

[本文引用: 1]

SI H, LI M T. Application of HbAlc, CK and FBG combined detection in the diagnosis of diabetic microangionopathy[J]. Journal of Medical Forum, 2021, 42(2): 138-140, 145.

[本文引用: 1]

LI H H, CHEN W H, CHEN Y S, et al. Neferine attenuates acute kidney injury by inhibiting NF-κB signaling and upregulating klotho expression[J]. Front Pharmacol, 2019, 10: 1197.

[本文引用: 1]

HERNANDEZ L F, EGUCHI N, WHALEY D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci (Schol Ed), 2022, 14(2): 14.

[本文引用: 1]

MA X J, MA J R, LENG T, et al. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention[J]. Ren Fail, 2023, 45(1): 2146512.

[本文引用: 2]

TANG Y S, ZHAO Y H, ZHONG Y, et al. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/caspase-1 signaling pathway[J]. Inflamm Res, 2019, 68(9): 727-738.

[本文引用: 1]

ZHANG X, LIAO Y, YE T. Correlations of SDF-1 and CXCR4 levels with caspase-3 expression in the retina of rats after optic nerve injury[J]. Int J Clin Exp Pathol, 2020, 13(8): 2058-2064.

[本文引用: 1]

SIDDIQI F S, CHEN L H, ADVANI S L, et al. CXCR4 promotes renal tubular cell survival in male diabetic rats: implications for ligand inactivation in the human kidney[J]. Endocrinology, 2015, 156(3): 1121-1132.

[本文引用: 1]

TAKASHIMA S, FUJITA H, FUJISHIMA H, et al. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy[J]. Kidney Int, 2016, 90(4): 783-796.

[本文引用: 1]

TANG W M, PANJA S, JOGDEO C M, et al. Study of renal accumulation of targeted polycations in acute kidney injury[J]. Biomacromolecules, 2022, 23(5): 2064-2074.

[本文引用: 1]

CHEN L H, ADVANI S L, THAI K, et al. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease[J]. PLoS One, 2014, 9(3): e92227.

[本文引用: 1]

YANG J, ZHU F M, WANG X H, et al. Continuous AMD3100 treatment worsens renal fibrosis through regulation of bone marrow derived pro-angiogenic cells homing and T-cell-related inflammation[J]. PLoS One, 2016, 11(2): e0149926.

[本文引用: 1]

魏萍, 薛春苗, 潘霖, 等. 甲基莲心碱对胰岛素抵抗的HepG2细胞降糖的影响[J]. 临床和实验医学杂志, 2020, 19(12): 1283-1286.

[本文引用: 1]

WEI P, XUE C M, PAN L, et al. Effects of neferine on hypoglycemia of insulin-resistant HepG2 cells[J]. Journal of Clinical and Experimental Medicine, 2020, 19(12): 1283-1286.

[本文引用: 1]

/