上海交通大学学报(医学版), 2024, 44(4): 509-517 doi: 10.3969/j.issn.1674-8115.2024.04.012

综述

巨噬细胞M1/M2型极化在不同肝病中的作用研究进展

牛媛媛,1, 汪龙德,2, 胥文娟3, 李正菊1, 张瑞婷1, 吴毓谦1

1.甘肃中医药大学中医临床学院,兰州 730000

2.甘肃中医药大学附属医院消化科,兰州 730000

3.甘肃省中医院针灸三科,兰州 730050

Research progress in the role of M1/M2 polarization of macrophages in different liver diseases

NIU Yuanyuan,1, WANG Longde,2, XU Wenjuan3, LI Zhengju1, ZHANG Ruiting1, WU Yuqian1

1.Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China

2.Department of Gastroenterology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China

3.Third Department of Acupuncture and Moxibustion, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China

通讯作者: 汪龙德,电子信箱:wwlldd666@163.com

编委: 邢宇洋

收稿日期: 2023-09-13   接受日期: 2024-03-19   网络出版日期: 2024-04-28

基金资助: 国家自然科学基金.  82160883
2022年度甘肃省中医药科研立项课题.  GZKZ-2022-5
兰州市城关区2021年科技计划项目.  2021-9-2
2022年兰州市科技计划项目.  2022-3-26
2023年甘肃省教育厅优秀研究生“创新之星”项目.  2023CXZX-731

Corresponding authors: WANG Longde, E-mail:wwlldd666@163.com.

Received: 2023-09-13   Accepted: 2024-03-19   Online: 2024-04-28

作者简介 About authors

牛媛媛(1994—),女,住院医师,博士生;电子信箱:1067748351@qq.com。 E-mail:1067748351@qq.com

摘要

巨噬细胞具有较强的可塑性与异质性,可针对不同信号刺激发生功能转化,如转化为经典激活M1型(即M1型极化)、选择性激活M2型(即M2型极化)等。巨噬细胞M1/M2型极化的途径较为广泛,涉及核因子-κB(nuclear factor-κB,NF-κB)/丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路、白细胞介素-4(interleukin-4,IL-4)/信号转导与转录激活因子6(signal transduction and activator of transcription 6,STAT6)信号通路、Notch信号通路、无翼样糖蛋白/β-连环蛋白(Wnt/β-catenin)信号通路等。同时,巨噬细胞M1/M2型极化可不同程度地受到外泌体、代谢物、非编码RNA、电刺激、益生菌等的功能调节,其失衡与不同类型肝病的发生、发展关系密切。该文通过对该极化的作用机制进行梳理,发现巨噬细胞M1型极化在肝组织损伤、炎症反应及纤维化进程中起助推作用,巨噬细胞M2型极化则相反;其中,肝癌作为慢性肝病的晚期阶段,以巨噬细胞M2型极化增强、巨噬细胞M1型极化受损为特征。因此,该文关注巨噬细胞M1/M2型极化在不同类型肝病中的作用,以期能更好地确立巨噬细胞亚群靶向疗法。

关键词: 巨噬细胞极化 ; M1型巨噬细胞 ; M2型巨噬细胞 ; 肝脏疾病

Abstract

Macrophages have strong plasticity and heterogeneity, and can undergo functional transformation in response to different signal stimuli, such as classical activation of M1 type (M1 type polarization) and selective activation of M2 type (M2 type polarization). The pathways of macrophage M1/M2 polarization are quite extensive, involving nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, interleukin-4 (IL-4)/signal transduction and activator of transcription 6 (STAT6) signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, etc. At the same time, M1/M2 polarization of macrophages is also regulated by exosomes, metabolites, non-coding RNA, electrical stimulation, probiotics, etc., and its imbalance is closely related to the occurrence and development of different types of liver disease. In this paper, the mechanism of its polarization was reviewed, and it was found that M1 polarization of macrophages played a promoting role in the process of liver tissue injury, inflammation and fibrosis, while M2 polarization of macrophages played the opposite role. Among them, hepatocellular carcinoma, as the advanced stage of chronic liver disease, was characterized by increased M2 polarization and impaired M1 polarization of macrophages. Therefore, this paper pays attention to the role of M1/M2 polarization of macrophages in different types of liver diseases, in order to better establish the targeted therapy of macrophage subsets.

Keywords: macrophage polarization ; M1 macrophage ; M2 macrophage ; liver disease

PDF (1837KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

牛媛媛, 汪龙德, 胥文娟, 李正菊, 张瑞婷, 吴毓谦. 巨噬细胞M1/M2型极化在不同肝病中的作用研究进展. 上海交通大学学报(医学版)[J], 2024, 44(4): 509-517 doi:10.3969/j.issn.1674-8115.2024.04.012

NIU Yuanyuan, WANG Longde, XU Wenjuan, LI Zhengju, ZHANG Ruiting, WU Yuqian. Research progress in the role of M1/M2 polarization of macrophages in different liver diseases. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(4): 509-517 doi:10.3969/j.issn.1674-8115.2024.04.012

多种致病因素作用于肝脏可引发急性肝损伤(acute liver injury,ALI)、病毒性肝炎、酒精性肝病、肝纤维化(hepatic fibrosis,HF)、肝硬化、肝癌(hepatocellular carcinoma,HCC)等诸多肝脏疾病(简称肝病)。研究1发现肝病的发病率呈逐年上升趋势,其中肝硬化、HCC作为慢性肝病的晚期阶段具有较高的致死率。因此,深入探索不同肝病的发病机制、挖掘潜在治疗靶点以延缓其恶变态势,对于各类肝病的防治具有十分重要的意义。

巨噬细胞具有可塑性强、分布广泛、异质性高等特点2,该细胞的激活、代谢、免疫、极化在不同肝病的病理进程中能够发挥关键作用;其中,巨噬细胞极化是该类细胞在组织微环境中获得独特功能的生物过程。具体而言,巨噬细胞可在不同因素刺激下,极化为经典激活M1型(M1型极化)或选择性激活M2型(M2型极化),进而发挥促炎抗肿瘤或抗炎促肿瘤等生物学效应。近年来的研究3发现,巨噬细胞M1/M2型极化的失衡与不同类型肝病的发生与发展关系密切。基于此,本文梳理了巨噬细胞M1/M2型极化的信号通路,归纳出干预其应答反应的功能调节剂,并总结了巨噬细胞M1/M2型极化失衡对不同肝病的影响,以期为临床肝病的诊治提供理论参考。

1 巨噬细胞极化概述及其相关信号通路

病原微生物、理化刺激等因素可促使巨噬细胞极化为M1型或M2型;其中,后者可进一步细分为M2a、M2b、M2c、M2d亚型4。研究5指出,γ干扰素(interferon-γ,IFN-γ)、细菌脂多糖(lipopolysaccharide,LPS)等可驱动巨噬细胞发生M1型极化,并伴随分化簇80(cluster of differentiation,CD80)、CD86等细胞表面标志物的过表达;随后,M1型巨噬细胞通过分泌白细胞介素-6(interleukin-6,IL-6)等介导辅助性T细胞1(T helper cell 1,Th1)及Th17型免疫反应,以进一步启动炎症应激、肿瘤生长抑制、抗原提呈与病原体消除等功能。汪鹏等6、SHAPOURI-MOGHADDAM等7研究发现转化生长因子-β(transforming growth factor-β,TGF-β)、IL-4等可诱导巨噬细胞发生M2型极化,而M2型巨噬细胞可通过上调精氨酸酶-1(arginase-1,Arg-1)、CD206、CD163等的表达水平来介导Th2型免疫反应,以进一步发挥炎症抑制、组织修复、肿瘤促进、寄生虫感染防治、组织重构及血管生成等作用。除了上述细胞表面标志物及功能特征变化外,巨噬细胞M1/M2型极化亦离不开相关信号通路的调控,总结如表1

表1   巨噬细胞极化的表型分类、诱导剂、细胞因子分泌、生物标志物、信号通路及功能作用

Tab 1  Phenotypic classification, inducers, cytokine secretion, biomarkers, signaling pathways and functional characteristics of macrophage polarization

Macrophage polarization typeInducerCytokine secretionBiomarkerSignaling pathways affecting polarizationFunctional characteristics

M1

macrophage

LPS,

IFN-γ

IL-6, IL-12, IL-1β, TNF-α, NO, GFAP, iNOS

CD80, CD86,

CD16/32

NF-κB, MAPK, Wnt/

β-catenin, Notch

Antigen-presenting, mediating Th1 and Th17 immune responses, proinflammatory, anti-tumor, eliminating pathogens

M2a

macrophage

IL-4,

IL-13

Arg-1, CCL17, IL-10, CCL22CD206, CD103IL-4/STAT6, MAPK, JNK-1/STAT6Anti-inflammatory, mediating Th2 type immune response, tissue repair, allergy, fibrotic immune regulation

M2b

macrophage

IL-33,

LPS

IL-10, TNF-α, IL-6, TGF-β, VEGFCD206, MHCⅡTLR4, PI3K

M2c

macrophage

TGF-β,

IL-10

Arg-1, TGF-β,

CXCL13

CD163, CD206JAK/STAT3, NF-κB, TGF-β/SmadsPhagocytosis, immunosuppression

M2d

macrophage

TLR agonist

IL-10, VEGF,

IL-12low, TNF-αlow

CD206TLR4, NF-κBOrganizational restructuring, angiogenesis

Note: TNF-α—tumor necrosis factor-α; NO—nitric oxide; GFAP—glial fibrillary acidic protein; iNOS—inducible nitric oxide synthase; NF-κB—nuclear factor-κB; MAPK—mitogen-activated protein kinase; CCL17—C-C chemokine ligand 17; STAT6—signal transduction and activator of transcription 6; JNK-1—c-Jun N-terminal kinase-1; VEGF—vascular endothelial growth factor; MHCⅡ—major histocompatibility complex Ⅱ; TLR4—toll-like receptor 4; PI3K—phosphoinositide 3-kinase; CXCL13—C-X-C motif chemokine ligand 13.

新窗口打开| 下载CSV


巨噬细胞M1/M2型极化可受到多种信号通路的调节,如NF-κB信号通路、MAPK信号通路,IL-4/STAT6信号通路、Notch信号通路、Wnt/β-catenin信号通路等8,其中STAT3是多条串联网络的中枢节点。具体介绍如下。

1.1 NF-κB/MAPK信号通路

研究9显示,LPS可通过激活NF-κB和MAPK通路来刺激巨噬细胞发生M1型极化,颗粒蛋白前体(progranulin,PGRN)则可通过抑制NF-κB和MAPK通路来下调巨噬细胞的M1型极化。TAO等10研究发现,瞬时受体电位5(transient receptor potential 5,TRP5)通道的激活亦可抑制巨噬细胞M1型极化,而这一作用的实现与NF-κB通路密切相关。

1.2 IL-4/STAT6信号通路

IL-4可刺激巨噬细胞发生STAT6信号通路参与的M2型极化,即当巨噬细胞接收IL-4信号刺激后,胞内的JNK-1随即磷酸化其丝氨酸位点上的STAT6,以进一步诱导巨噬细胞发生M2型极化11

1.3 Notch信号通路

激活Notch信号可诱导巨噬细胞极化为M1型,发挥促炎与抗肿瘤作用;阻断Notch信号则可促使巨噬细胞极化为M2型,进而启动抑炎和促肿瘤效应12。如高强度间歇训练可通过抑制Notch信号通路来逆转巨噬细胞M1型极化13,这为缓解肝损伤提供了新视角;HU等14研究指出,从茯苓菌核中提取的茯苓多糖PCP-1C可通过激活Notch信号通路来刺激巨噬细胞发生M1型极化。

1.4 Wnt/β-catenin信号通路

IL-17A是巨噬细胞表型调节剂,与Wnt/β-catenin信号通路共同参与巨噬细胞M1/M2型极化。如YUAN等15在探索Wnt/β-catenin对IL-17A介导的单核细胞/巨噬细胞样细胞系影响时发现,IL-17A激活Wnt/β-catenin通路可诱导巨噬细胞M1型极化、抑制巨噬细胞M2型极化,而值得注意的是JAK/STAT信号通路亦参与了上述过程;提示巨噬细胞极化的不同演变趋势或存在2条及以上的信号串扰效应。

2 巨噬细胞M1/M2型极化的功能调节剂

2.1 外泌体

细胞释放的外泌体作为巨噬细胞M1/M2型极化的重要信号介质,可调节细胞的状态与功能。如肿瘤来源的外泌体微小RNA(microRNA,miRNA)、环状RNA(circular RNA,circRNA)、长链非编码RNA(long non-coding RNA,lncRNA)等。研究16显示,缺氧HCC细胞源性的外泌体miR-1260b可诱导促肿瘤相关的巨噬细胞M2型极化,以进一步促进HCC细胞的免疫逃逸。WANG等17发现,在HCC进展过程中癌细胞衍生的外泌体HSA_circRNA_0074854的表达上调与癌细胞迁移有关,而下调其表达可抑制外泌体介导的巨噬细胞M2型极化,从而减缓癌细胞的迁移。此外,暴露于不同活化条件下,巨噬细胞中的lncRNA表达谱亦存在显著差异,如HCC细胞衍生的外泌体lncRNA TUC339的表达水平与巨噬细胞M2型极化呈正相关,敲低该lncRNA可刺激巨噬细胞M2型极化向M1型极化转变,从而抑制肿瘤的生长与扩散18。由此可见,肿瘤来源的外泌体RNA参与了巨噬细胞M2型极化中的促肿瘤效应,而靶向其miRNA、circRNA、lncRNA或可为开发活性抗肿瘤药物打开新窗口。

2.2 免疫代谢

巨噬细胞极化受不同代谢方式的调节,如依赖于糖酵解的M1型、依赖于氧化磷酸化的M2型。LI等19发现丙酮酸脱氢酶E1 α1亚基(pyruvate dehydrogenase E1 subunit alpha 1,Pdha1)的缺失可改变胞内pH值,进一步加速糖酵解,从而维持巨噬细胞M1型极化。王梦等20证实,选择性敲除小鼠肝脏巨噬细胞Pdha1基因可诱发由巨噬细胞M1型极化介导的肝功能障碍(以同型半胱氨酸水平增高为特征)。除上述调节方式外,巨噬细胞极化亦离不开代谢物转运蛋白(如葡萄糖转运蛋白、乳酸转运蛋白、脂肪酸转运蛋白、氨基酸转运蛋白、胆固醇转运蛋白等21)的调节,这为聚焦代谢物转运蛋白以干预巨噬细胞极化状态提供了新视角。

2.3 非编码RNA

miRNA、小核仁RNA(small nucleolar RNA,snoRNA)、核内小RNA(small nuclear RNA,snRNA)、Piwi相互作用RNA(Piwi-interacting RNA,piRNA)均参与了巨噬细胞M1/M2型极化的功能调节。如miR-novel-3-nature和miR-27b-5p可通过上调TNF-α的表达来促进巨噬细胞M1型极化22,而miR-130b-3p可通过下调干扰素调节因子1(interferon regulatory factor 1,IRF1)的表达来抑制巨噬细胞M1型极化23;miR-145-3p可通过靶向IL-16、IL-10的表达来促进巨噬细胞M2型极化24。除此之外,巨噬细胞极化亦受到lncRNA的调节25,如lncRNA-NEAT1通过miR-224-5p/IL-33轴来促进巨噬细胞M2a型极化,而敲低lncRNA-NEAT1可逆转巨噬细胞M2a型极化26。特殊情况下,不同类型RNA可协同调节巨噬细胞的极化:lncRNA可通过miRNA的反应元件竞争性地靶向miRNA以调节下游靶RNA表达(即lncRNA-miRNA-mRNA轴)如lncRNA LINC01140靶向miR-140-5p,而miR-140-5p可调节成纤维细胞生长因子9(fibroblast growth factor 9,FGF9),以进一步影响巨噬细胞M2型极化27

2.4 益生菌

菌群代谢产物除了可以维持免疫稳态外,还参与了巨噬细胞M1/M2型极化的功能调节,如丁酸可驱动巨噬细胞M2型极化28。研究29显示,定植于胃肠道的益生菌可抑制巨噬细胞M1型极化、促进巨噬细胞M2型极化,以达到减少组织炎症反应、恢复免疫平衡的目的。有研究30报道,短乳杆菌G-101通过抑制NF-κB和MAPK信号通路实现了巨噬细胞的M1型向M2型转化。另有研究31发现,某种含有保加利亚乳杆菌DWT1的益生菌制剂能够通过减少Arg-1TGF-β转录并增加IL-1β、IL-6、IL-12表达水平来激活巨噬细胞M1型极化。由此可见,优势菌群及其代谢产物在巨噬细胞的功能转化中发挥了重要作用,而益生菌制剂的开发应用,或可为巨噬细胞极化失衡相关疾病的诊治提供理论参考。

2.5 其他

在不同设置条件下,氧化铟锡平面微电极可产生差异性电刺激。其中,方波刺激可通过调节胞内离子浓度,选择性地促进由LPS/IFN-γ诱导的巨噬细胞M1型极化;正弦波刺激除影响胞内离子浓度外,亦可通过相关膜受体参与由IL-4诱导的巨噬细胞M2型极化32。继而提示,差异性电刺激参与了巨噬细胞的M1/M2型极化过程。

3 巨噬细胞极化对不同肝脏疾病的影响

腹膜、骨髓、脾脏等来源的巨噬细胞与肝脏巨噬细胞(库普弗细胞)在酒精蓄积、药物损伤、病毒感染、代谢紊乱等病理因素刺激下,可适应性极化为促炎抗肿瘤的M1型或抑炎促肿瘤的M2型,从而触发或延缓不同肝脏疾病的发生与发展(图1)。因此,具体了解巨噬细胞M1/M2型极化在不同肝脏疾病中的重要作用,将有助于更好地理解疾病演变过程,并据此确立有针对性的治疗方案。相关内容阐述如下。

图1

图1   巨噬细胞M1/M2型极化参与不同类型肝脏疾病的作用机制

Note: NASH—non-alcoholic steatohepatitis; MCP-1—monocyte chemoattractant protein-1; AMPK—AMP-activated protein kinase; PKB—protein kinase B, also known as AKT; PGE2—prostaglandin E2; EP4—prostaglandin E2 receptor 4; mTOR—mammalian target of rapamycin; NPC1—niemann-pick C1; FGL2—fibrinogen-like protein 2; HSP90—heat shock protein 90; DHFR—dihydrofolate reductase; mtROS—mitochondrial reactive oxygen species; FoxO1—forkhead box protein O1; CCR4—C-C chemokine receptor 4; SLAMF6—signaling lymphocytic activation molecule family member 6; TSPO—translocator protein; YAP—Yes-associated protein; TSG-6—tumor necrosis factor alpha-stimulated gene/inducible protein 6; SIRT1—silent information regulator 1; MMP9—matrix metalloproteinase 9; IGF-1—insulin-like growth factor 1.

Fig 1   Mechanism of M1/M2 polarization of macrophages involved in different types of liver diseases


3.1 ALI

Notch1和Hippo-YAP信号通路均参与了ALI的病理过程。YANG等33研究发现,肝损伤时肝巨噬细胞中Notch1与YAP信号通路的激活可推动巨噬细胞M1型极化,特异性敲除Notch1并抑制YAP信号转导则可促进巨噬细胞M2型极化,从而减少促炎介质释放与肝细胞凋亡;该结果提示,关注Notch1-YAP信号通路在调节巨噬细胞M1/M2型极化中的重要作用或可为ALI的防治提供新策略。类似研究34表明,氧化应激可通过促进巨噬细胞M1型极化、抑制巨噬细胞M2型极化,进一步加剧乙酰氨基酚诱导的ALI。在脓毒症相关肝损伤中,线粒体外膜中的TSPO可加剧炎症反应,而吲哚生物碱Koumine(KM)作为TSPO的高亲和力配体可抑制巨噬细胞M1型极化并促进M2型极化,以减少炎症反应35,提示KM或可作为治疗该疾病的潜在理想候选物之一。衰老可加剧巨噬细胞介导的肝损伤,其作用机制与衔接蛋白TRIB1功能障碍可进一步抑制肝脏缺血/再灌注损伤中的M2型极化有关;而药理学诱导巨噬细胞TRIB1过表达可激活其M2型极化,从而缓解肝脏缺血/再灌注损伤36。由此可见,在各类肝损伤期间巨噬细胞存在M1型极化增强、M2型极化相对不足的失稳局面,提示特异性阻断或逆转M1型极化是修复肝损伤的关键。

3.2 肝炎

3.2.1 巨噬细胞M1型极化促进肝组织炎症反应

(1)非酒精性脂肪性肝炎

脂质代谢失调参与非酒精性脂肪性肝炎的病理过程,而胆固醇积累诱导的内质网应激可通过触发巨噬细胞M1型极化来促进该病的发生与发展。如在乙型肝炎病毒X蛋白(hepatitis B virus x protein,HBx)相关的非酒精性脂肪性肝炎中,PEG2通过EP4诱导巨噬细胞M1型极化,进而加速非酒精性脂肪性肝炎的病程进展,其中HBx调节巨噬细胞M1型极化的作用机制与胆固醇由溶酶体向内质网的转运密切相关37

(2)伴刀豆蛋白A诱导的肝炎

在伴刀豆蛋白A(concanavalin A,Con A)诱导的肝炎中,半乳糖凝集素-3(galactin-3,Gal-3)可通过抑制巨噬细胞M2型极化来发挥促炎效应,Gal-3的选择性抑制剂TD139则可促进巨噬细胞M2型极化以减轻肝损伤38

(3)自身免疫性肝炎

在持续免疫反应刺激下自身免疫性肝炎存在恶性进展趋势,Zeste基因增强子人类同源物2(EZH2,又称组蛋白甲基转移酶EZH2)的表达上调,通过介导组蛋白H3第27位赖氨酸的三甲基化(H3K27me3)来加速免疫应答与纤维化进程,而抑制EZH2可诱导巨噬细胞在自身免疫性肝炎发展中从M1型转向M2型39。因此,沉默或抑制EZH2有望成为防治自身免疫性肝炎的潜在策略。

3.2.2 巨噬细胞M2型极化抑制肝组织炎症反应

(1)自身免疫性肝炎

免疫功能障碍是自身免疫性肝炎的核心病理机制,IL-34通过驱动巨噬细胞M2型极化抑制炎症反应,以进一步保护肝脏免受Con A介导的炎性损伤;而IL-34缺失则表现为高度肝炎敏感性40

(2)酒精性肝炎

TSG-6具有组织保护特性,可明显降低酒精性肝炎小鼠的巨噬细胞浸润并抑制氧化应激,这一作用机制的发挥与阻碍STAT3激活、诱导巨噬细胞M2型极化有关41

(3)病毒性肝炎

巨噬细胞M1/M2型极化在乙型肝炎病毒(hepatitis B virus,HBV)诱发的损伤修复中起关键作用。LI等42研究发现,乙型肝炎表面抗原、乙型肝炎e抗原的分泌增加可通过上调SIRT1的表达、促进Notch1胞内结构域去乙酰化并减少NF-κB核转位,调节由HBV触发的巨噬细胞M1型向M2型的转化,继而提示靶向巨噬细胞中的SIRT1/Notch1途径或可为治疗HBV免疫逃避及慢性感染提供新思路。

由此可见,除靶向沉默或过表达相关基因外,氧化应激、蛋白修饰、内质网应激等亦可在炎症相关肝病的演变过程中发挥重要作用。限制巨噬细胞M1型极化而推动巨噬细胞M2型极化,可改善酒精、高脂饮食等引起的组织损伤与炎症反应。

3.3 HF

3.3.1 巨噬细胞M1型极化推动HF进展

HF是HCC的前期可干预阶段,若病理因素持续存在则可进一步发展为肝硬化甚至HCC43。研究44显示,细胞外基质(如Ⅰ型胶原、Ⅲ型胶原)过度沉积是HF的主要病理特征,肝星状细胞(hepatic stellate cell,HSC)的激活、增殖、转分化可驱动细胞外基质积累,提示HSC活化是HF进展的核心事件。肝损伤时巨噬细胞与HSC活化之间存在正反馈循环,一方面活化的HSC可招募巨噬细胞入肝以启动固有免疫应答,另一方面巨噬细胞通过释放细胞因子、趋化因子等来刺激HSC活化45-46。感染期间,FGL2的表达增加与肝脏炎症及纤维化程度呈正相关,这是由于FGL2与线粒体HSP90结合可显著抑制FoxO1的磷酸化,从而加剧了巨噬细胞中炎症损伤和线粒体功能障碍47。研究48发现,活化HSC来源的外泌体DHFR的表达水平从HF、肝硬化到HCC经历了逐渐增强的趋势,而沉默DHFR基因可抑制HSC的激活并减弱巨噬细胞M1型极化。由此可见,HF损伤过程中除关注HSC外,亦应重点探寻巨噬细胞M1/M2表型变化与HSC活化增殖之间的影响关系。

3.3.2 巨噬细胞M2型极化加速HF消退

巨噬细胞在HF消退过程中亦占据着重要地位,其作用途径归纳如下:①Th2通过释放IL-10(巨噬细胞M2型极化诱导剂)抑制Th1、巨噬细胞及中性粒细胞产生促炎细胞因子,从而减轻肝损伤过程中的HSC增殖与纤维生成49。②库普弗细胞通过产生大量基质金属蛋白酶(matrix metalloproteinase,MMP),如MMP9、MMP12、MMP13等,来加速沉积细胞外基质的降解,以进一步加速组织纤维化消退(即为巨噬细胞M2型极化的纤维化免疫调节特性)50。③另有报道指出,各类损伤刺激可招募Ly6Clow单核巨噬细胞转分化为Ly6Chigh恢复性巨噬细胞,后者则可通过下调促炎细胞因子与趋化因子表达、减少TGF-β释放、增强IGF-1表达等来发挥抗炎及纤维化溶解作用51。值得注意的是,恢复性巨噬细胞表型不属于M1/M2类别,提示巨噬细胞具有较高的异质性且M1/M2分类存在一定的局限性52。因此,深入了解从纤维化巨噬细胞到恢复性巨噬细胞的转换机制以及异质性的调节模式,或将对指导、开发新型抗纤维化疗法(如巨噬细胞亚群靶向疗法)提供帮助。

3.4 HCC

3.4.1 巨噬细胞M2型极化促进HCC进展

细胞外囊泡lncRNA FAL1可诱导巨噬细胞M2型极化,进一步激活Wnt/β-catenin信号通路以促进癌细胞的增殖与侵袭,最终导致HCC恶性进展53。肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)通过加速肿瘤生长来影响HCC的预后,SLAMF6通过SLAMF6/Ly108途径介导巨噬细胞M2型极化,而Ly108沉默的巨噬细胞可通过抑制M2型极化进一步减弱HCC细胞的生长与迁移54。在肝脏病变条件下,CCL2由TAM发生M2c型极化后产生,并通过与肿瘤细胞上的CCR4结合来增强HCC的侵袭性与不良预后55。另有研究56发现,在HCC细胞条件培养基中,巨噬细胞极化为M2型时伴随S100A9(巨噬细胞差异表达基因)过表达,而敲除S100A9可显著抑制该细胞的M2型极化,从而延缓HCC进展。由此可见,肿瘤微环境中的成分(如外泌体、细胞外囊泡)异变可直接或间接影响HCC进展。而在阐明TAM极化功能效应层面,除了关注促瘤M2型和抗瘤M1型外,还应加强对TAM其他表型的功能筛选与载体研发(如巨噬细胞M1型极化的可能促瘤效应),以期能更好地指导HCC诊治。

3.4.2 巨噬细胞M1型极化抑制HCC进展

巨噬细胞M1型极化具有良好抑瘤效应。研究显示内源性β干扰素可通过维持巨噬细胞M1型极化进一步抑制HCC细胞增殖与侵袭57,但内源性β干扰素受到IRF1刺激后,会减弱对巨噬细胞M1型极化的维持作用,甚至造成部分巨噬细胞的M2型极化,这也为科学解释其抑瘤效应转为促瘤效应提供了客观依据58。血小板P2Y12受体参与巨噬细胞极化的功能调节。如PAVLOVIĆ等59研究指出,替格瑞洛可通过抑制P2Y12的表达来诱导内质网应激,进而增强巨噬细胞的M1型极化。此外,巨噬细胞作为肿瘤微环境的重要组成部分,常借助外泌体进行肿瘤细胞与微环境间的物质交换。如HBV阳性的HCC细胞外泌体miR-142-3p可通过诱导巨噬细胞铁死亡来破坏M1型巨噬细胞的抗肿瘤特性,从而加剧HCC的进展60。以上研究均表明,巨噬细胞M1型极化功能受损与HCC进展密切相关,而恢复巨噬细胞M1型极化的抗肿瘤特性有助于缓解HCC。

4 总结与展望

巨噬细胞M1/M2型极化是细胞应对损伤刺激的特异性反应,涉及信号通路广泛,且不同程度地受到外泌体、代谢物、非编码RNA、电刺激、益生菌等调节。巨噬细胞M1/M2型极化失衡参与了ALI、病毒性肝炎、非酒精性脂肪性肝病、HF、HCC等的演变过程。巨噬细胞M1型极化具有抗原提呈、病原体清除和肿瘤抑制功能,在病毒感染、药物损伤等刺激下可诱发或加重肝炎及纤维化程度,但在HCC防治中具有保护作用;而巨噬细胞M2型极化具有抗炎特性,能加速伤口愈合并有效缓解炎症损伤,如ALI、非酒精性脂肪性肝病等。尽管巨噬细胞M1/M2型极化在不同肝病中的作用研究已取得阶段性成果,但依旧存在如下问题:①在某些特殊情况下(如不同靶点或物种),巨噬细胞M1/M2型极化显现出了与普遍认知相反的作用效应,但具体机制仍不明确。②鉴于肝脏组织与其他器官间存在的串扰效应(如肠-肝轴、脂肪组织-肝轴、骨髓-肝轴),如何更准确地靶向多器官的巨噬细胞极化以推动肝病的诊断和治疗仍有待进一步探索。③目前多集中于巨噬细胞M1、M2表型的功能研究,对巨噬细胞其他相关表型的认识与开发仍有所欠缺。④新药研发或辅助技术靶向调控巨噬细胞极化功能的基础研究仍处于起步阶段,尤其缺乏临床多中心、大样本的随机对照数据支撑。因此,下一步研究应结合本领域最新的研究共识,利用多学科协作优势,不断挖掘巨噬细胞极化在肝脏病理损伤中的作用机制与潜在价值,以期能更好地服务临床。

作者贡献声明

牛媛媛负责搜集、整理文献,并进行文章主体撰写。汪龙德进行文章指导、审校,并予以经费支持。胥文娟参与文献查询。李正菊、张瑞婷、吴毓谦参与论文修改及文章框架结构的调整。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

NIU Yuanyuan was responsible for collecting and sorting out the literature and writing the main body of the article. WANG Longde conducted the article guidance, review and financial support. XU Wenjuan participated in the literature search. LI Zhengju, ZHANG Ruiting and WU Yuqian participated in the revision of the article and the adjustment of the article frame structure. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

ASRANI S K, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171.

[本文引用: 1]

VAN DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852.

[本文引用: 1]

许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39(4): 922-928.

[本文引用: 1]

XU J, JIN W L, LI X. A new perspective for the treatment of liver fibrosis: targeting macrophage metabolism[J]. Journal of Clinical Hepatology, 2023, 39(4): 922-928.

[本文引用: 1]

YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090.

[本文引用: 1]

DOU L, SHI X M, HE X S, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2020, 10: 3112.

[本文引用: 1]

汪鹏, 仇建南, 王忠夏, 等. 肝癌微环境中肿瘤相关巨噬细胞的研究进展[J]. 临床肝胆病杂志, 2023, 39(5): 1212-1218.

[本文引用: 1]

WANG P, QIU J N, WANG Z X, et al. Research advances in tumor-associated macrophages in hepatocellular carcinoma microenvironment[J]. Journal of Clinical Hepatology, 2023, 39(5): 1212-1218.

[本文引用: 1]

SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.

[本文引用: 1]

XIA T T, ZHANG M, LEI W, et al. Advances in the role of STAT3 in macrophage polarization[J]. Front Immunol, 2023, 14: 1160719.

[本文引用: 1]

LIU L L, GUO H M, SONG A M, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-κB and MAPK pathways[J]. BMC Immunol, 2020, 21(1): 32.

[本文引用: 1]

TAO L R, GUO G, QI Y Y, et al. Inhibition of canonical transient receptor potential 5 channels polarizes macrophages to an M1 phenotype[J]. Pharmacology, 2020, 105(3/4): 202-208.

[本文引用: 1]

ARPA L, BATLLE C, JIANG P J, et al. Distinct responses to IL4 in macrophages mediated by JNK[J]. Cells, 2023, 12(8): 1127.

[本文引用: 1]

CHEN W Y, LIU Y N, CHEN J, et al. The Notch signaling pathway regulates macrophage polarization in liver diseases[J]. Int Immunopharmacol, 2021, 99: 107938.

[本文引用: 1]

SHANAKI M, KHOSRAVI M, KHOSHDOONI-FARAHANI A, et al. High-intensity interval training reversed high-fat diet-induced M1-macrophage polarization in rat adipose tissue via inhibition of NOTCH signaling[J]. J Inflamm Res, 2020, 13: 165-174.

[本文引用: 1]

HU X R, HONG B Z, SHAN X X, et al. The effect of Poria cocos polysaccharide PCP-1C on M1 macrophage polarization via the Notch signaling pathway[J]. Molecules, 2023, 28(5): 2140.

[本文引用: 1]

YUAN C, YANG D D, MA J, et al. Modulation of Wnt/β-catenin signaling in IL-17A-mediated macrophage polarization of RAW264.7 cells[J]. Braz J Med Biol Res, 2020, 53(8): e9488.

[本文引用: 1]

杨晔妮, 赵梓吟, 王有鹏, 等. 缺氧肝癌源性外泌体miR-1260b对肿瘤相关巨噬细胞M2亚型的影响及其机制[J]. 精准医学杂志, 2023, 38(2): 105-110, 115.

[本文引用: 1]

YANG Y N, ZHAO Z Y, WANG Y P, et al. Effects of hypoxic hepatoma-derived exosome miR-1260b on M2 macrophages and mechanism[J]. Journal of Precision Medicine, 2023, 38(2): 105-110, 115.

[本文引用: 1]

WANG Y, GAO R F, LI J P, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818.

[本文引用: 1]

LI X, LEI Y, WU M, et al. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339[J]. Int J Mol Sci, 2018, 19(10): 2958.

[本文引用: 1]

LI D, WANG C Q, MA P F, et al. PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect[J]. Cell Death Dis, 2018, 9(5): 466.

[本文引用: 1]

王梦, 孙岳, 杨安宁, 等. 巨噬细胞PDHA1基因敲除对非酒精性脂肪性肝病小鼠肝细胞凋亡的影响[J]. 中国病理生理杂志, 2023, 39(1): 123-130.

[本文引用: 1]

WANG M, SUN Y, YANG A N, et al. Effect of macrophage PDHA1 gene knockout on apoptosis of hepatocytes in mice with non-alcoholic fatty liver disease[J]. Chinese Journal of Pathophysiology, 2023, 39(1): 123-130.

[本文引用: 1]

CHENG J W, CAI W W, ZONG S Y, et al. Metabolite transporters as regulators of macrophage polarization[J]. Naunyn Schmiedeberg's Arch Pharmacol, 2022, 395(1): 13-25.

[本文引用: 1]

MA D, ZHOU X, WANG Y, et al. Changes in the small noncoding RNAome during M1 and M2 macrophage polarization[J]. Front Immunol, 2022, 13: 799733.

[本文引用: 1]

GUO Q, ZHU X X, WEI R, et al. MiR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol, 2021, 236(3): 2008-2022.

[本文引用: 1]

HUANG Y, DU K L, GUO P Y, et al. IL-16 regulates macrophage polarization as a target gene of miR-145-3p[J]. Mol Immunol, 2019, 107: 1-9.

[本文引用: 1]

GHAFOURI-FARD S, ABAK A, TAVAKKOLI AVVAL S, et al. The impact of non-coding RNAs on macrophage polarization[J]. Biomed Pharmacother, 2021, 142: 112112.

[本文引用: 1]

LIU D L, WEI Y H, LIU Y D, et al. The long non-coding RNA NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization and A1 astrocyte activation[J]. Mol Neurobiol, 2021, 58(9): 4506-4519.

[本文引用: 1]

WU S Q, XU R, ZHU X, et al. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization[J]. Aging, 2020, 12(24): 25845-25864.

[本文引用: 1]

ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6): 341-352.

[本文引用: 1]

WANG Y, LIU H W, ZHAO J S. Macrophage polarization induced by probiotic bacteria: a concise review[J]. Probiotics Antimicrob Proteins, 2020, 12(3): 798-808.

[本文引用: 1]

JANG S E, HYAM S R, HAN M J, et al. Lactobacillus brevis G-101 ameliorates colitis in mice by inhibiting NF-κB, MAPK and AKT pathways and by polarizing M1 macrophages to M2-like macrophages[J]. J Appl Microbiol, 2013, 115(3): 888-896.

[本文引用: 1]

GUHA D, BANERJEE A, MUKHERJEE R, et al. A probiotic formulation containing Lactobacillus bulgaricus DWT1 inhibits tumor growth by activating pro-inflammatory responses in macrophages[J]. J Funct Foods, 2019, 56: 232-245.

[本文引用: 1]

GU J H, HE X Z, CHEN X Y, et al. Effects of electrical stimulation on cytokine-induced macrophage polarization[J]. J Tissue Eng Regen Med, 2022, 16(5): 448-459.

[本文引用: 1]

YANG Y, NI M, ZONG R B, et al. Targeting Notch1-YAP circuit reprograms macrophage polarization and alleviates acute liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(5): 1085-1104.

[本文引用: 1]

WANG Q, WEI S, ZHOU H M, et al. Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress[J]. Cell Death Discov, 2019, 5: 119.

[本文引用: 1]

JIN G L, LIU H P, HUANG Y X, et al. Koumine regulates macrophage M1/M2 polarization via TSPO, alleviating sepsis-associated liver injury in mice[J]. Phytomedicine, 2022, 107: 154484.

[本文引用: 1]

CHEN Q, SONG Y T, YANG N L, et al. Aging deteriorated liver Ischemia and reperfusion injury by suppressing Tribble's proteins 1 mediated macrophage polarization[J]. Bioengineered, 2022, 13(6): 14519-14533.

[本文引用: 1]

LAN Y, QIAN B, HUANG H Y, et al. Hepatocyte-derived prostaglandin E2-modulated macrophage M1-type polarization via mTOR-NPC1 axis-regulated cholesterol transport from lysosomes to the endoplasmic reticulum in hepatitis B virus x protein-related nonalcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23(19): 11660.

[本文引用: 1]

VOLAREVIC V, MILOVANOVIC M, LJUJIC B, et al. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice[J]. Hepatology, 2012, 55(6): 1954-1964.

[本文引用: 1]

CHI G, PEI J H, LI X Q. EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization[J]. Int Immunopharmacol, 2022, 106: 108612.

[本文引用: 1]

LIU Y, LIU H, ZHU J S, et al. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis[J]. Pathol Res Pract, 2019, 215(8): 152493.

[本文引用: 1]

WAN Y M, WU H M, LI Y H, et al. TSG-6 inhibits oxidative stress and induces M2 polarization of hepatic macrophages in mice with alcoholic hepatitis via suppression of STAT3 activation[J]. Front Pharmacol, 2020, 11: 10.

[本文引用: 1]

LI J H, YU M X, ZONG R B, et al. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 322(4): G459-G471.

[本文引用: 1]

AFFO S, YU L X, SCHWABE R F. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol, 2017, 12: 153-186.

[本文引用: 1]

LEE C B, KIM M, HAN J, et al. Mesenchymal stem cells influence activation of hepatic stellate cells, and constitute a promising therapy for liver fibrosis[J]. Biomedicines, 2021, 9(11): 1598.

[本文引用: 1]

AYDIN M M, AKCALI K C. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21.

[本文引用: 1]

黄莎莎, 邹艳丽, 谭洁, 等. CX3CR1沉默介导的巨噬细胞极化减轻CCl4诱导的小鼠肝纤维化[J]. 陆军军医大学学报, 2022, 44(13): 1314-1321.

[本文引用: 1]

HUANG S S, ZOU Y L, TAN J, et al. CX3CR1 silencing-mediated macrophage polarization attenuates CCl4-induced liver fibrosis in mice[J]. Journal of Army Medical University, 2022, 44(13): 1314-1321.

[本文引用: 1]

TAO R, HAN M W, YUAN W, et al. Fibrinogen-like protein 2 promotes proinflammatory macrophage polarization and mitochondrial dysfunction in liver fibrosis[J]. Int Immunopharmacol, 2023, 117: 109631.

[本文引用: 1]

PENG Y, LI Z D, CHEN S, et al. DHFR silence alleviated the development of liver fibrosis by affecting the crosstalk between hepatic stellate cells and macrophages[J]. J Cell Mol Med, 2021, 25(21): 10049-10060.

[本文引用: 1]

WREE A, MARRA F. The inflammasome in liver disease[J]. J Hepatol, 2016, 65(5): 1055-1056.

[本文引用: 1]

FENG M, DING J, WANG M, et al. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution[J]. Int J Biol Sci, 2018, 14(9): 1033-1040.

[本文引用: 1]

RAMACHANDRAN P, PELLICORO A, VERNON M A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci USA, 2012, 109(46): E3186-E3195.

[本文引用: 1]

ELSHERIF S A, ALM A S. Role of macrophages in liver cirrhosis: fibrogenesis and resolution[J]. Anat Cell Biol, 2022, 55(1): 14-19.

[本文引用: 1]

LV S M, WANG J H, LI L. Extracellular vesicular lncRNA FAL1 promotes hepatocellular carcinoma cell proliferation and invasion by inducing macrophage M2 polarization[J]. J Physiol Biochem, 2023, 79(3): 669-682.

[本文引用: 1]

MENG Q, DUAN X Y, YANG Q C, et al. SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization[J]. Oncol Lett, 2022, 23(3): 83.

[本文引用: 1]

KOHLHEPP M S, LIU H Y, TACKE F, et al. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer: challenges and opportunities[J]. Front Mol Biosci, 2023, 10: 1129831.

[本文引用: 1]

YANG L F, ZHANG Z B, WANG L. S100A9 promotes tumor-associated macrophage for M2 macrophage polarization to drive human liver cancer progression: an in vitro study[J]. Kaohsiung J Med Sci, 2023, 39(4): 345-353.

[本文引用: 1]

谢昌利, 郭变琴, 刘翠颖, 等. 内源性β干扰素维持M1型巨噬细胞极化状态抑制肝癌细胞增殖和侵袭[J]. 细胞与分子免疫学杂志, 2016, 32(7): 865-869, 875.

[本文引用: 1]

XIE C L, GUO B Q, LIU C Y, et al. Endogenous IFN-β maintains M1 polarization status and inhibits proliferation and invasion of hepatocellular carcinoma cells[J]. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(7): 865-869, 875.

[本文引用: 1]

谢昌利, 刘翠颖, 林艳, 等. IRF1对M1巨噬细胞极化及其抗肿瘤效应的影响[J]. 基础医学与临床, 2017, 37(2): 189-196.

[本文引用: 1]

XIE C L, LIU C Y, LIN Y, et al. Effect of IRF1 on polarization and antitumor function of M1 microphage[J]. Basic and Clinical Medicine, 2017, 37(2): 189-196.

[本文引用: 1]

PAVLOVIĆ N, KOPSIDA M, GERWINS P, et al. Inhibiting P2Y12 in macrophages induces endoplasmic reticulum stress and promotes an anti-tumoral phenotype[J]. Int J Mol Sci, 2020, 21(21): 8177.

[本文引用: 1]

HU Z Q, ZHANG H, LIU W, et al. Mechanism of HBV-positive liver cancer cell exosomal miR-142-3p by inducing ferroptosis of M1 macrophages to promote liver cancer progression[J]. Transl Cancer Res, 2022, 11(5): 1173-1187.

[本文引用: 1]

/