上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (4): 509-517.doi: 10.3969/j.issn.1674-8115.2024.04.012
• 综述 • 上一篇
牛媛媛1(), 汪龙德2(), 胥文娟3, 李正菊1, 张瑞婷1, 吴毓谦1
收稿日期:
2023-09-13
接受日期:
2024-03-19
出版日期:
2024-04-28
发布日期:
2024-04-28
通讯作者:
汪龙德
E-mail:1067748351@qq.com;wwlldd666@163.com
作者简介:
牛媛媛(1994—),女,住院医师,博士生;电子信箱:1067748351@qq.com。
基金资助:
NIU Yuanyuan1(), WANG Longde2(), XU Wenjuan3, LI Zhengju1, ZHANG Ruiting1, WU Yuqian1
Received:
2023-09-13
Accepted:
2024-03-19
Online:
2024-04-28
Published:
2024-04-28
Contact:
WANG Longde
E-mail:1067748351@qq.com;wwlldd666@163.com
Supported by:
摘要:
巨噬细胞具有较强的可塑性与异质性,可针对不同信号刺激发生功能转化,如转化为经典激活M1型(即M1型极化)、选择性激活M2型(即M2型极化)等。巨噬细胞M1/M2型极化的途径较为广泛,涉及核因子-κB(nuclear factor-κB,NF-κB)/丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路、白细胞介素-4(interleukin-4,IL-4)/信号转导与转录激活因子6(signal transduction and activator of transcription 6,STAT6)信号通路、Notch信号通路、无翼样糖蛋白/β-连环蛋白(Wnt/β-catenin)信号通路等。同时,巨噬细胞M1/M2型极化可不同程度地受到外泌体、代谢物、非编码RNA、电刺激、益生菌等的功能调节,其失衡与不同类型肝病的发生、发展关系密切。该文通过对该极化的作用机制进行梳理,发现巨噬细胞M1型极化在肝组织损伤、炎症反应及纤维化进程中起助推作用,巨噬细胞M2型极化则相反;其中,肝癌作为慢性肝病的晚期阶段,以巨噬细胞M2型极化增强、巨噬细胞M1型极化受损为特征。因此,该文关注巨噬细胞M1/M2型极化在不同类型肝病中的作用,以期能更好地确立巨噬细胞亚群靶向疗法。
中图分类号:
牛媛媛, 汪龙德, 胥文娟, 李正菊, 张瑞婷, 吴毓谦. 巨噬细胞M1/M2型极化在不同肝病中的作用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 509-517.
NIU Yuanyuan, WANG Longde, XU Wenjuan, LI Zhengju, ZHANG Ruiting, WU Yuqian. Research progress in the role of M1/M2 polarization of macrophages in different liver diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 509-517.
Macrophage polarization type | Inducer | Cytokine secretion | Biomarker | Signaling pathways affecting polarization | Functional characteristics |
---|---|---|---|---|---|
M1 macrophage | LPS, IFN-γ | IL-6, IL-12, IL-1β, TNF-α, NO, GFAP, iNOS | CD80, CD86, CD16/32 | NF-κB, MAPK, Wnt/ β-catenin, Notch | Antigen-presenting, mediating Th1 and Th17 immune responses, proinflammatory, anti-tumor, eliminating pathogens |
M2a macrophage | IL-4, IL-13 | Arg-1, CCL17, IL-10, CCL22 | CD206, CD103 | IL-4/STAT6, MAPK, JNK-1/STAT6 | Anti-inflammatory, mediating Th2 type immune response, tissue repair, allergy, fibrotic immune regulation |
M2b macrophage | IL-33, LPS | IL-10, TNF-α, IL-6, TGF-β, VEGF | CD206, MHCⅡ | TLR4, PI3K | |
M2c macrophage | TGF-β, IL-10 | Arg-1, TGF-β, CXCL13 | CD163, CD206 | JAK/STAT3, NF-κB, TGF-β/Smads | Phagocytosis, immunosuppression |
M2d macrophage | TLR agonist | IL-10, VEGF, IL-12low, TNF-αlow | CD206 | TLR4, NF-κB | Organizational restructuring, angiogenesis |
表1 巨噬细胞极化的表型分类、诱导剂、细胞因子分泌、生物标志物、信号通路及功能作用
Tab 1 Phenotypic classification, inducers, cytokine secretion, biomarkers, signaling pathways and functional characteristics of macrophage polarization
Macrophage polarization type | Inducer | Cytokine secretion | Biomarker | Signaling pathways affecting polarization | Functional characteristics |
---|---|---|---|---|---|
M1 macrophage | LPS, IFN-γ | IL-6, IL-12, IL-1β, TNF-α, NO, GFAP, iNOS | CD80, CD86, CD16/32 | NF-κB, MAPK, Wnt/ β-catenin, Notch | Antigen-presenting, mediating Th1 and Th17 immune responses, proinflammatory, anti-tumor, eliminating pathogens |
M2a macrophage | IL-4, IL-13 | Arg-1, CCL17, IL-10, CCL22 | CD206, CD103 | IL-4/STAT6, MAPK, JNK-1/STAT6 | Anti-inflammatory, mediating Th2 type immune response, tissue repair, allergy, fibrotic immune regulation |
M2b macrophage | IL-33, LPS | IL-10, TNF-α, IL-6, TGF-β, VEGF | CD206, MHCⅡ | TLR4, PI3K | |
M2c macrophage | TGF-β, IL-10 | Arg-1, TGF-β, CXCL13 | CD163, CD206 | JAK/STAT3, NF-κB, TGF-β/Smads | Phagocytosis, immunosuppression |
M2d macrophage | TLR agonist | IL-10, VEGF, IL-12low, TNF-αlow | CD206 | TLR4, NF-κB | Organizational restructuring, angiogenesis |
图1 巨噬细胞M1/M2型极化参与不同类型肝脏疾病的作用机制Note: NASH—non-alcoholic steatohepatitis; MCP-1—monocyte chemoattractant protein-1; AMPK—AMP-activated protein kinase; PKB—protein kinase B, also known as AKT; PGE2—prostaglandin E2; EP4—prostaglandin E2 receptor 4; mTOR—mammalian target of rapamycin; NPC1—niemann-pick C1; FGL2—fibrinogen-like protein 2; HSP90—heat shock protein 90; DHFR—dihydrofolate reductase; mtROS—mitochondrial reactive oxygen species; FoxO1—forkhead box protein O1; CCR4—C-C chemokine receptor 4; SLAMF6—signaling lymphocytic activation molecule family member 6; TSPO—translocator protein; YAP—Yes-associated protein; TSG-6—tumor necrosis factor alpha-stimulated gene/inducible protein 6; SIRT1—silent information regulator 1; MMP9—matrix metalloproteinase 9; IGF-1—insulin-like growth factor 1.
Fig 1 Mechanism of M1/M2 polarization of macrophages involved in different types of liver diseases
1 | ASRANI S K, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. |
2 | VAN DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852. |
3 | 许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39(4): 922-928. |
XU J, JIN W L, LI X. A new perspective for the treatment of liver fibrosis: targeting macrophage metabolism[J]. Journal of Clinical Hepatology, 2023, 39(4): 922-928. | |
4 | YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. |
5 | DOU L, SHI X M, HE X S, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2020, 10: 3112. |
6 | 汪鹏, 仇建南, 王忠夏, 等. 肝癌微环境中肿瘤相关巨噬细胞的研究进展[J]. 临床肝胆病杂志, 2023, 39(5): 1212-1218. |
WANG P, QIU J N, WANG Z X, et al. Research advances in tumor-associated macrophages in hepatocellular carcinoma microenvironment[J]. Journal of Clinical Hepatology, 2023, 39(5): 1212-1218. | |
7 | SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. |
8 | XIA T T, ZHANG M, LEI W, et al. Advances in the role of STAT3 in macrophage polarization[J]. Front Immunol, 2023, 14: 1160719. |
9 | LIU L L, GUO H M, SONG A M, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-κB and MAPK pathways[J]. BMC Immunol, 2020, 21(1): 32. |
10 | TAO L R, GUO G, QI Y Y, et al. Inhibition of canonical transient receptor potential 5 channels polarizes macrophages to an M1 phenotype[J]. Pharmacology, 2020, 105(3/4): 202-208. |
11 | ARPA L, BATLLE C, JIANG P J, et al. Distinct responses to IL4 in macrophages mediated by JNK[J]. Cells, 2023, 12(8): 1127. |
12 | CHEN W Y, LIU Y N, CHEN J, et al. The Notch signaling pathway regulates macrophage polarization in liver diseases[J]. Int Immunopharmacol, 2021, 99: 107938. |
13 | SHANAKI M, KHOSRAVI M, KHOSHDOONI-FARAHANI A, et al. High-intensity interval training reversed high-fat diet-induced M1-macrophage polarization in rat adipose tissue via inhibition of NOTCH signaling[J]. J Inflamm Res, 2020, 13: 165-174. |
14 | HU X R, HONG B Z, SHAN X X, et al. The effect of Poria cocos polysaccharide PCP-1C on M1 macrophage polarization via the Notch signaling pathway[J]. Molecules, 2023, 28(5): 2140. |
15 | YUAN C, YANG D D, MA J, et al. Modulation of Wnt/β-catenin signaling in IL-17A-mediated macrophage polarization of RAW264.7 cells[J]. Braz J Med Biol Res, 2020, 53(8): e9488. |
16 | 杨晔妮, 赵梓吟, 王有鹏, 等. 缺氧肝癌源性外泌体miR-1260b对肿瘤相关巨噬细胞M2亚型的影响及其机制[J]. 精准医学杂志, 2023, 38(2): 105-110, 115. |
YANG Y N, ZHAO Z Y, WANG Y P, et al. Effects of hypoxic hepatoma-derived exosome miR-1260b on M2 macrophages and mechanism[J]. Journal of Precision Medicine, 2023, 38(2): 105-110, 115. | |
17 | WANG Y, GAO R F, LI J P, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818. |
18 | LI X, LEI Y, WU M, et al. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339[J]. Int J Mol Sci, 2018, 19(10): 2958. |
19 | LI D, WANG C Q, MA P F, et al. PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect[J]. Cell Death Dis, 2018, 9(5): 466. |
20 | 王梦, 孙岳, 杨安宁, 等. 巨噬细胞PDHA1基因敲除对非酒精性脂肪性肝病小鼠肝细胞凋亡的影响[J]. 中国病理生理杂志, 2023, 39(1): 123-130. |
WANG M, SUN Y, YANG A N, et al. Effect of macrophage PDHA1 gene knockout on apoptosis of hepatocytes in mice with non-alcoholic fatty liver disease[J]. Chinese Journal of Pathophysiology, 2023, 39(1): 123-130. | |
21 | CHENG J W, CAI W W, ZONG S Y, et al. Metabolite transporters as regulators of macrophage polarization[J]. Naunyn Schmiedeberg's Arch Pharmacol, 2022, 395(1): 13-25. |
22 | MA D, ZHOU X, WANG Y, et al. Changes in the small noncoding RNAome during M1 and M2 macrophage polarization[J]. Front Immunol, 2022, 13: 799733. |
23 | GUO Q, ZHU X X, WEI R, et al. MiR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol, 2021, 236(3): 2008-2022. |
24 | HUANG Y, DU K L, GUO P Y, et al. IL-16 regulates macrophage polarization as a target gene of miR-145-3p[J]. Mol Immunol, 2019, 107: 1-9. |
25 | GHAFOURI-FARD S, ABAK A, TAVAKKOLI AVVAL S, et al. The impact of non-coding RNAs on macrophage polarization[J]. Biomed Pharmacother, 2021, 142: 112112. |
26 | LIU D L, WEI Y H, LIU Y D, et al. The long non-coding RNA NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization and A1 astrocyte activation[J]. Mol Neurobiol, 2021, 58(9): 4506-4519. |
27 | WU S Q, XU R, ZHU X, et al. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization[J]. Aging, 2020, 12(24): 25845-25864. |
28 | ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6): 341-352. |
29 | WANG Y, LIU H W, ZHAO J S. Macrophage polarization induced by probiotic bacteria: a concise review[J]. Probiotics Antimicrob Proteins, 2020, 12(3): 798-808. |
30 | JANG S E, HYAM S R, HAN M J, et al. Lactobacillus brevis G-101 ameliorates colitis in mice by inhibiting NF-κB, MAPK and AKT pathways and by polarizing M1 macrophages to M2-like macrophages[J]. J Appl Microbiol, 2013, 115(3): 888-896. |
31 | GUHA D, BANERJEE A, MUKHERJEE R, et al. A probiotic formulation containing Lactobacillus bulgaricus DWT1 inhibits tumor growth by activating pro-inflammatory responses in macrophages[J]. J Funct Foods, 2019, 56: 232-245. |
32 | GU J H, HE X Z, CHEN X Y, et al. Effects of electrical stimulation on cytokine-induced macrophage polarization[J]. J Tissue Eng Regen Med, 2022, 16(5): 448-459. |
33 | YANG Y, NI M, ZONG R B, et al. Targeting Notch1-YAP circuit reprograms macrophage polarization and alleviates acute liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(5): 1085-1104. |
34 | WANG Q, WEI S, ZHOU H M, et al. Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress[J]. Cell Death Discov, 2019, 5: 119. |
35 | JIN G L, LIU H P, HUANG Y X, et al. Koumine regulates macrophage M1/M2 polarization via TSPO, alleviating sepsis-associated liver injury in mice[J]. Phytomedicine, 2022, 107: 154484. |
36 | CHEN Q, SONG Y T, YANG N L, et al. Aging deteriorated liver Ischemia and reperfusion injury by suppressing Tribble's proteins 1 mediated macrophage polarization[J]. Bioengineered, 2022, 13(6): 14519-14533. |
37 | LAN Y, QIAN B, HUANG H Y, et al. Hepatocyte-derived prostaglandin E2-modulated macrophage M1-type polarization via mTOR-NPC1 axis-regulated cholesterol transport from lysosomes to the endoplasmic reticulum in hepatitis B virus x protein-related nonalcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23(19): 11660. |
38 | VOLAREVIC V, MILOVANOVIC M, LJUJIC B, et al. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice[J]. Hepatology, 2012, 55(6): 1954-1964. |
39 | CHI G, PEI J H, LI X Q. EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization[J]. Int Immunopharmacol, 2022, 106: 108612. |
40 | LIU Y, LIU H, ZHU J S, et al. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis[J]. Pathol Res Pract, 2019, 215(8): 152493. |
41 | WAN Y M, WU H M, LI Y H, et al. TSG-6 inhibits oxidative stress and induces M2 polarization of hepatic macrophages in mice with alcoholic hepatitis via suppression of STAT3 activation[J]. Front Pharmacol, 2020, 11: 10. |
42 | LI J H, YU M X, ZONG R B, et al. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 322(4): G459-G471. |
43 | AFFO S, YU L X, SCHWABE R F. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol, 2017, 12: 153-186. |
44 | LEE C B, KIM M, HAN J, et al. Mesenchymal stem cells influence activation of hepatic stellate cells, and constitute a promising therapy for liver fibrosis[J]. Biomedicines, 2021, 9(11): 1598. |
45 | AYDIN M M, AKCALI K C. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21. |
46 | 黄莎莎, 邹艳丽, 谭洁, 等. CX3CR1沉默介导的巨噬细胞极化减轻CCl4诱导的小鼠肝纤维化[J]. 陆军军医大学学报, 2022, 44(13): 1314-1321. |
HUANG S S, ZOU Y L, TAN J, et al. CX3CR1 silencing-mediated macrophage polarization attenuates CCl4-induced liver fibrosis in mice[J]. Journal of Army Medical University, 2022, 44(13): 1314-1321. | |
47 | TAO R, HAN M W, YUAN W, et al. Fibrinogen-like protein 2 promotes proinflammatory macrophage polarization and mitochondrial dysfunction in liver fibrosis[J]. Int Immunopharmacol, 2023, 117: 109631. |
48 | PENG Y, LI Z D, CHEN S, et al. DHFR silence alleviated the development of liver fibrosis by affecting the crosstalk between hepatic stellate cells and macrophages[J]. J Cell Mol Med, 2021, 25(21): 10049-10060. |
49 | WREE A, MARRA F. The inflammasome in liver disease[J]. J Hepatol, 2016, 65(5): 1055-1056. |
50 | FENG M, DING J, WANG M, et al. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution[J]. Int J Biol Sci, 2018, 14(9): 1033-1040. |
51 | RAMACHANDRAN P, PELLICORO A, VERNON M A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci USA, 2012, 109(46): E3186-E3195. |
52 | ELSHERIF S A, ALM A S. Role of macrophages in liver cirrhosis: fibrogenesis and resolution[J]. Anat Cell Biol, 2022, 55(1): 14-19. |
53 | LV S M, WANG J H, LI L. Extracellular vesicular lncRNA FAL1 promotes hepatocellular carcinoma cell proliferation and invasion by inducing macrophage M2 polarization[J]. J Physiol Biochem, 2023, 79(3): 669-682. |
54 | MENG Q, DUAN X Y, YANG Q C, et al. SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization[J]. Oncol Lett, 2022, 23(3): 83. |
55 | KOHLHEPP M S, LIU H Y, TACKE F, et al. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer: challenges and opportunities[J]. Front Mol Biosci, 2023, 10: 1129831. |
56 | YANG L F, ZHANG Z B, WANG L. S100A9 promotes tumor-associated macrophage for M2 macrophage polarization to drive human liver cancer progression: an in vitro study[J]. Kaohsiung J Med Sci, 2023, 39(4): 345-353. |
57 | 谢昌利, 郭变琴, 刘翠颖, 等. 内源性β干扰素维持M1型巨噬细胞极化状态抑制肝癌细胞增殖和侵袭[J]. 细胞与分子免疫学杂志, 2016, 32(7): 865-869, 875. |
XIE C L, GUO B Q, LIU C Y, et al. Endogenous IFN-β maintains M1 polarization status and inhibits proliferation and invasion of hepatocellular carcinoma cells[J]. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(7): 865-869, 875. | |
58 | 谢昌利, 刘翠颖, 林艳, 等. IRF1对M1巨噬细胞极化及其抗肿瘤效应的影响[J]. 基础医学与临床, 2017, 37(2): 189-196. |
XIE C L, LIU C Y, LIN Y, et al. Effect of IRF1 on polarization and antitumor function of M1 microphage[J]. Basic and Clinical Medicine, 2017, 37(2): 189-196. | |
59 | PAVLOVIĆ N, KOPSIDA M, GERWINS P, et al. Inhibiting P2Y12 in macrophages induces endoplasmic reticulum stress and promotes an anti-tumoral phenotype[J]. Int J Mol Sci, 2020, 21(21): 8177. |
60 | HU Z Q, ZHANG H, LIU W, et al. Mechanism of HBV-positive liver cancer cell exosomal miR-142-3p by inducing ferroptosis of M1 macrophages to promote liver cancer progression[J]. Transl Cancer Res, 2022, 11(5): 1173-1187. |
[1] | 李旭冉, 陶诗聪, 郭尚春. 骨髓间充质干细胞来源小细胞外囊泡对骨质疏松症的改善作用[J]. 上海交通大学学报(医学版), 2023, 43(4): 406-416. |
[2] | 陈晨, 程卓安, 王存, 夏强. 铁死亡调控在肝脏疾病治疗中的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(3): 365-373. |
[3] | 贺 明,魏 倩,张颖婷. 铁死亡相关机制与其在肝脏相关疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(11): 1519-1523. |
[4] | 孔祥歆,刘卉芳,陈凤玲 . CaMKKβ 通过激活 AMPK/JAK2/STAT3 信号促进小鼠单核巨噬细胞向 M2 表型转换[J]. 上海交通大学学报(医学版), 2017, 37(7): 914-. |
[5] | 孙 超, 范建高. 诱导多能干细胞在肝脏疾病中的研究进展[J]. , 2012, 32(5): 667-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||