上海交通大学学报(医学版), 2024, 44(5): 576-583 doi: 10.3969/j.issn.1674-8115.2024.05.005

论著 · 基础研究

谷氨酸通路基因多态性交互作用与快感缺失的关联研究

黄欣欣,1,2, 刘超3, 吕钦谕4, 胡国芹5, 鲍晨曦6, 张瑶2, 易正辉,2

1.南京医科大学附属脑科医院精神三科,南京 210029

2.上海交通大学医学院附属精神卫生中心临床八科,上海 201108

3.江苏省南通市第四人民医院精神二科,南通 226000

4.上海交通大学医学院附属精神卫生中心临床六科,上海 201108

5.上海市徐汇区精神卫生中心精神科,上海 200232

6.南京医科大学附属脑科医院儿童心理卫生研究中心,南京 210029

Relationship between polymorphic interaction of glutamate pathway genes and anhedonia

HUANG Xinxin,1,2, LIU Chao3, LÜ Qinyu4, HU Guoqin5, BAO Chenxi6, ZHANG Yao2, YI Zhenghui,2

1.Department of Third Psychiatry Ward, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China

2.Eighth Clinical Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China

3.Department of Second Psychiatry Ward, Nantong Fourth People′s Hospital, Jiangsu Province, Nantong 226000, China

4.Sixth Clinical Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China

5.Department of Psychiatry, Shanghai Xuhui District Mental Health Center, Shanghai 200232, China

6.Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China

通讯作者: 易正辉,电子信箱:yizhenghui1971@163.com

编委: 邢宇洋

收稿日期: 2023-11-29   接受日期: 2024-05-16   网络出版日期: 2024-05-28

基金资助: 科技部科技创新2030—“脑科学与类脑研究”重大项目.  2022ZD0208500
2022年度南京市卫生科技发展专项资金资助项目.  YKK22133
2023—2025年南京脑科医院青年人才项目.  23-25-2R10
2022年江苏省“双创博士”计划.  JSSCBS20221916
2022年南通市科学技术局社会民生面上项目.  MS22022098
2023年南通市卫生健康委员会指令性青年课题.  QN2023041

Corresponding authors: YI Zhenghui, E-mail:yizhenghui1971@163.com.

Received: 2023-11-29   Accepted: 2024-05-16   Online: 2024-05-28

作者简介 About authors

黄欣欣(1994—),女,住院医师,博士;电子信箱:xinxinhuang1994@163.com。 E-mail:xinxinhuang1994@163.com

摘要

目的·探究谷氨酸通路基因-基因交互作用与快感缺失的关联。方法·纳入2017年1月—2020年8月在上海交通大学医学院附属精神卫生中心门诊及病房招募的279例精神分裂症(schizophrenia,SZ)患者、236例重型抑郁障碍(major depression disorder,MDD)患者,以及在社区招募的236例健康对照(healthy control,HC)为研究对象。收集并比较3组被试的一般人口学资料及临床特征。采用时间性愉快体验量表(Temporal Experience of Pleasure Scale,TEPS)中文版评估3组的愉快体验能力。采用广义多因子降维(generalized multifactor dimensionality reduction,GMDR)法建立谷氨酸通路基因(NOS1APGSK3βDAOADISC1GRIN2A)单核苷酸多态性(single nucleotide polymorphism,SNP)交互作用模型,依据该模型将SZ及MDD患者分为高风险组和低风险组,并对其愉快体验能力的差异进行组间比较,以分析基因-基因交互作用对快感缺失的影响。结果·年龄、受教育年限在3组间的差异具有统计学意义,首发年龄、病程在SZ、MDD组间的差异具有统计学意义(均P=0.000)。3组被试在总体愉快体验、期待性愉快体验及即时性愉快体验间差异均具有统计学意义(均P=0.000);SZ、MDD组患者的总体愉快体验、期待性及即时性愉快体验均低于HC组(均P校正=0.000),且SZ与MDD组在期待性愉快体验上具有边缘性统计学差异(P校正=0.051)。通过GMDR建模发现,由DAOA-rs3916965与DISC1-rs821577组成的2位点交互作用模型对SZ患者总体愉快体验能力具有预测作用(P=0.003),由NOS1AP-rs1858232和GRIN2A-rs1014531组成的2位点交互作用模型对MDD患者期待性愉快体验能力具有预测作用(P=0.037);且SZ高风险组患者的总体愉快体验能力、MDD高风险组患者的期待性愉快体验能力均分别低于其低风险组(t=3.443,P=0.000;t=3.471,P=0.001)。结论·谷氨酸通路基因多态性交互作用可能参与了快感缺失的发生。

关键词: 快感缺失 ; 谷氨酸通路 ; 广义多因子降维 ; 交互作用

Abstract

Objective ·To explore the association between gene-gene interaction of glutamate pathway and anhedonia. Methods ·A total of 279 patients with schizophrenia (SZ) and 236 patients with major depression disorder (MDD) recruited in the outpatient department and ward of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and 236 healthy controls (HC) recruited in the community from January 2017 to August 2020 were included in the study. General demographic data and clinical characteristics of the three groups were collected and compared. The Chinese version of Temporal Experience of Pleasure Scale (TEPS) was used to evaluate the pleasure experience ability of the three groups. Generalized multifactor dimensionality reduction (GMDR) method was used to establish the interaction model of the single nucleotide polymorphism (SNP) in glutamate pathway genes (NOS1AP, GSK3β, DAOA, DISC1 and GRIN2A). According to the interaction model, SZ and MDD patients were divided into high-risk group and low-risk group, and the differences in pleasure experience ability were compared between the two groups, so as to analyze the effect of gene-gene interaction on anhedonia. Results ·There were significant differences in age and years of education among the three groups, and in age of onset and duration of illness between SZ and MDD groups (all P=0.000). There were significant differences among the three groups of participants in terms of overall pleasure experience, anticipatory pleasure experience and consummatory pleasure experience (all P=0.000); the overall pleasure experience, anticipatory pleasure experience and consummatory pleasure experience in the SZ and MDD group were lower than those in the HC group (all Pcorr =0.000), and there was marginal statistical difference in anticipatory pleasure experience between the SZ and MDD groups (Pcorr=0.051). Through GMDR modeling, it was found that the 2-loci interaction model composed of DAOA-rs3916965 and DISC1-rs821577 had a predictive effect on the overall pleasure experience ability of SZ patients (P=0.003), and the 2-loci interaction model composed of NOS1AP-rs1858232 and GRIN2A-rs1014531 had a predictive effect on the anticipatory pleasure experience ability of MDD patients (P=0.037); moreover, the overall pleasure experience ability of patients in the SZ high-risk group and anticipatory pleasure experience ability of patients in MDD high-risk groups were lower than those in their low-risk groups (t=3.443, P=0.000; t=3.471, P=0.001). Conclusion ·The interaction of glutamate pathway gene polymorphisms may be involved in the occurrence of anhedonia.

Keywords: anhedonia ; glutamate pathway ; generalized multifactor dimensionality reduction (GMDR) ; interaction effect

PDF (2084KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄欣欣, 刘超, 吕钦谕, 胡国芹, 鲍晨曦, 张瑶, 易正辉. 谷氨酸通路基因多态性交互作用与快感缺失的关联研究. 上海交通大学学报(医学版)[J], 2024, 44(5): 576-583 doi:10.3969/j.issn.1674-8115.2024.05.005

HUANG Xinxin, LIU Chao, LÜ Qinyu, HU Guoqin, BAO Chenxi, ZHANG Yao, YI Zhenghui. Relationship between polymorphic interaction of glutamate pathway genes and anhedonia. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(5): 576-583 doi:10.3969/j.issn.1674-8115.2024.05.005

快感缺失(anhedonia)指个体对愉快的体验能力降低,并导致其社会功能和生活质量下降;快感缺失是精神分裂症(schizophrenia,SZ)阴性症状的主要症状,也是重型抑郁障碍(major depression disorders,MDD)的核心症状之一1。有研究2根据时间序列的不同,将愉快体验分为2个维度:即时性愉快体验和期待性愉快体验;前者与满足感紧密联系,是一种“当下”的快感体验,而后者与动机、目标导向性行为和“欲望”的体验关系更为紧密。目前,抗精神病药物及抗抑郁药物对快感缺失的治疗效果均不理想,其主要是针对多巴胺、5-羟色胺等受体发挥作用,继而提示快感缺失的发病机制可能与其他神经递质系统有关。

基于N-甲基-D-天冬氨酸受体(N-methyl-D-aspartate receptor,NMDAR)拮抗剂氯胺酮对MDD患者的抑郁症状具有快速缓解作用,有学者提出了快感缺失的谷氨酸假说;同时,LEE等3发现小鼠大脑皮层谷氨酸水平下降可导致其抑郁样行为的发生、临床研究4发现MDD患者的脑内存在较高水平的谷氨酸表达等均支持上述假说。而中枢神经系统NMDAR功能减退是谷氨酸假说的重要部分5,如动物研究6发现敲除小鼠大脑皮质和海马中间神经元的谷氨酸离子型受体NMDA亚基1(glutamate ionotropic receptor NMDA type subunit 1,Grin1)可使该小鼠出现快感缺失症状,ZHANG等7发现敲除谷氨酸离子型受体NMDA亚基3A(glutamate ionotropic receptor NMDA type subunit 3A,Grin3a)的小鼠也表现出了快感缺失症状,因此,谷氨酸通路中与NMDAR相关的基因可能参与了快感缺失的发生。

有研究8表明遗传因素在快感缺失的发生中具有一定的作用,快感缺失被认为是一种“内表型”,具有特异的神经生物学基础。谷氨酸通路上有5个重要的候选基因,包括D-氨基酸氧化酶激活剂(D-amino acid oxidase activator,DAOA)、一氧化氮合酶1接头蛋白(nitric oxide synthase 1 adaptor protein,NOS1AP)、精神分裂症断裂基因1(disrupted in schizophrenia 1,DISC1)、糖原合成酶激酶-3β(glycogen synthase kinase 3 beta,GSK3β)和谷氨酸离子型受体NMDA亚基2A(glutamate ionotropic receptor NMDA type subunit 2A,GRIN2A)。在该通路中,DAOA可影响D-氨基酸氧化酶的活性,后者可降解NMDAR调节剂D-丝氨酸,从而参与NMDAR的调控9。NOS1AP可与突触后密度蛋白-95(postsynaptic density protein-95,PSD-95)竞争性地与神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)结合,以抑制由NMDAR激活引起的一氧化氮(nitric oxide,NO)产生10。DISC1通过调控磷酸二酯酶4/蛋白激酶A/环腺苷单磷酸反应元件结合蛋白对NMDAR的表达和功能产生重要影响,进而调节NMDAR依赖的认知和情绪过程11。GSK3β是一种丝氨酸/苏氨酸激酶,在神经发生、发育和学习记忆中起关键作用;有研究发现NMDAR是GSK3β的激活剂,GSK3β-NMDAR信号通路参与了大脑的奖赏过程12GRIN2A是SZ和MDD的易感基因,研究发现该基因多态性与氯胺酮快速和持续的抗抑郁作用、血清氯胺酮和去甲氯胺酮的表达水平相关13。同时,本课题组的前期研究14发现NOS1AP、DISC1、DAOAGSK3β的基因多态性位点的交互作用与早发精神分裂症易感性有关。

基于此,本研究采用广义多因子降维(generalized multifactor dimensionality reduction,GMDR)法分析谷氨酸通路基因多态性交互作用对快感缺失的预测能力,以期寻找快感缺失的神经生物学标志物,从而为快感缺失的干预及药物研发提供科学依据。

1 对象与方法

1.1 研究对象

选择2017年1月—2020年8月在上海交通大学医学院附属精神卫生中心精神科门诊及病房招募的279例SZ患者、236例MDD患者,以及医院周边社区招募的236例健康对照(healthy control,HC)为研究对象。

SZ患者的纳入标准:① 符合《精神障碍诊断及统计手册(第五版)》[Diagnostic and Statistical Manual of Mental DisordersFifth Edition),DSM-5]中SZ的诊断标准。② 汉族。③ 年龄<70岁。MDD患者的纳入标准:① 符合DSM-5中MDD的诊断标准。② 汉族。③ 年龄<70岁。HC的纳入标准:① 汉族。② 年龄<70岁。③ 与患者无血缘关系。④ 无精神疾病及精神疾病家族史。所有被试的排除标准:① 入组前8周内使用无抽搐电休克治疗。② 处于怀孕或哺乳期。③ 存在物质滥用。④ 存在神经系统疾病及严重躯体疾病史。

1.2 研究方法

1.2.1 临床资料的收集及比较

收集并比较3组被试的临床资料,包括一般人口学资料(性别、年龄和受教育年限)和临床特征(首发年龄、病程和发作次数)。

1.2.2 快感缺失水平评估

采用时间性愉快体验量表(Temporal Experience of Pleasure Scale,TEPS)中文版对3组被试的快感缺失水平进行评估。TEPS是一种自评量表,主要从时间进程的角度将愉快体验区分为2个因子,即期待性愉快体验与即时性愉快体验。英文版TEPS共18道题目15,中文版TEPS在英文版的基础上增加了2题,并将其2个因子细分为4个因子,即抽象期待和具体期待性愉快体验、抽象即时和具体即时性愉快体验。同时,该量表为6级评分(1根本不像我~6非常像我),得分越高则愉快体验越好。中文版TEPS信效度较高,总体内部一致性较好16-17

1.2.3 SNP位点的选择

从dbSNP数据库(http://www.ncbi.nlm.nih.gov/snp/)和Ensembl数据库(http://asia.ensembl.org/index.html/)中查询并下载谷氨酸通路上5个候选基因(NOS1AP、GSK3β、DAOA、DISC1GRIN2A)的相关数据,并对其SNP位点进行选择,筛选条件为:在东亚人群中该位点的最小等位基因频率(minor allele frequency,MAF)>0.1,且既往文献1318-20报道其具有疾病易感性、与抑郁症状或SZ阴性症状相关。

1.2.4 DNA提取及基因型检测

分别采集3组被试的外周静脉血,并将其置于含2% EDTA的抗凝管中。使用血液基因组DNA提取试剂盒(天根生化科技有限公司)抽提全血中的基因组DNA,并使用Nanodrop 2000分光光度计对DNA样本的浓度和纯度进行检测,冻存于-80℃,具体操作参照试剂盒说明书进行。而后,将DNA样本送至上海天昊生物科技有限公司进行分析,即采用改进的多重连接酶检测反应(improved multiple ligase detection reaction,iMLDR)对3组样本进行基因型检测。

1.2.5 交互作用模型的建立及愉快体验能力比较

利用GMDR 1.0软件21建立对SZ及MDD患者快感缺失有预测作用的SNP位点交互作用模型,最佳模型的筛选条件为:① 交叉验证(cross validation,CV)一致性最大且大于8。② 预测准确率最高。而后,通过1 000次置换检验(permutation test)对模型的预测准确率进行统计检验22,选择性别、年龄和受教育年限作为协变量。同时,依据交互作用模型将SZ及MDD患者分为高风险组及低风险组,并对其愉快体验能力开展组间比较。

1.3 样本量计算

应用Quanto 1.2.4软件对样本量进行计算。在本研究筛选的SNP位点中rs778294的MAF最小(0.22),因此计算条件设置如下:MAF=0.22、OR=1.5、加性模式、统计效能为0.75,同时参考相关文献23SZ的一般人群患病率为0.6%、MDD的一般人群患病率为3.4%,最终SZ组、MDD组和HC组的样本数量至少分别为225例、227例、227例。

1.4 统计效能检验

应用Quanto 1.2.4软件对统计效能进行计算。本研究筛选的SNP位点的MAF范围为0.22~0.49,因此条件设置为:MAF=0.22~0.49、OR=1.5、加性模式,参考相关文献23SZ一般人群患病率为0.6%、MDD一般人群患病率为3.4%,以及本研究纳入的3组被试的样本量,最终计算统计效能为0.77~0.90。

1.5 统计学方法

利用SPSS 23.0软件进行统计分析。定性资料用n(%)表示,采用χ2检验进行分析。通过Kolmogorov-Smirnov对定量资料进行检验,符合正态分布的定量资料用x±s表述,采用独立样本t检验和单因素方差分析(One-way ANOVA)进行组间比较;不符合正态分布的定量资料用MQ1Q3)表示,采用Mann-Whitney U检验和Kruskal-Wallis H检验进行组间比较。两两比较选用邦费罗尼(Bonferroni)检验进行多重比较校正。采用广义线性模型(generalized linear model,GLM)对GMDR建立的交互作用模型进行验证。统计检验均为双侧检验,P<0.05表示差异具有统计学意义。

2 结果

2.1 3 组被试的一般人口学资料、临床特征及快感缺失水平的比较

对3组被试的一般人口学资料、临床特征及快感缺失水平进行比较分析,结果(表1)显示:① 一般人口学资料方面,年龄、受教育年限的组间差异具有统计学意义(均P=0.000)。② 临床特征方面,首发年龄、病程在SZ、MDD组之间的差异具有统计学意义(均P=0.000)。③ 快感缺失水平方面,TEPS总分、期待性愉快体验、即时性愉快体验以及其细分后的4因子的组间差异均具有统计学意义(均P<0.05)。同时,两两比较的结果(表1)显示,相比于HC组,SZ、MDD组患者的TEPS总分、期待性及即时性愉快体验较低(均P校正=0.000);且MDD与SZ组在期待性愉快体验上具有边缘性统计学差异(P校正=0.051),而该两组在即时性愉悦体验上无显著性差异。

表1   3组被试的一般人口学资料、临床特征及快感缺失水平的比较

Tab 1  Comparison of general demographic data, clinical characteristics and anhedonia levels among the three groups of participants

ItemSZ group (n=279)MDD group (n=236)HC group (n=236)χ2/Z/F valueP value
Gender/n(%)4.7570.093
Male146 (52.3)104 (44.1)125 (53.0)
Female133 (47.7)132 (55.9)111 (47.0)
Age/year24.5 (19.0, 31.0)①,④27.0 (22.0, 33.0)32.0 (24.0, 57.3)76.9410.000
Years of education/year12.0 (9.4, 15.0)①,④15.0 (12.0, 15.0)16.0 (12.6, 17.0)78.5040.000
Age of onset/year19.0 (16.0, 24.0)25.0 (20.0, 31.0)-7.1250.000
Duration of illness/month23.0 (7.5, 60.0)6.0 (2.0, 24.0)-6.7120.000
Number of episodes1.0 (1.0, 1.0)1.0 (1.0, 1.0)-0.3090.757
TEPS total score/score72.3±13.366.8±16.0②,③81.7±12.926.0280.000
Anticipatory34.0 (30.0, 38.0)30.0 (24.0, 37.0)37.0 (33.0, 43.0)34.7290.000
Abstract anticipatory18.0 (14.0, 20.0)15.0 (11.5, 19.0)②,③20.0 (18.0, 22.0)51.7440.000
Contextual anticipatory16.0 (14.0, 19.0)15.0 (13.0, 19.0)18.0 (14.8, 21.0)9.6060.008
Consummatory39.0 (34.0, 44.0)38.0 (30.5, 42.5)44.0 (38.8, 50.0)34.2770.000
Abstract consummatory24.5±5.322.5±6.3②,③27.7±4.620.4810.000
Contextual consummatory14.0 (11.5, 17.0) 15.0 (11.5, 16.5)17.0 (14.0, 19.0)22.2990.000

Note:SZ<HC, MDD<HC, MDD<SZ, SZ<MDD, all P<0.05.

新窗口打开| 下载CSV


2.2 SNP位点的选择结果

在5个候选基因中本研究共挑选出17个SNP位点,具体信息(名称、染色体位置、等位基因、MAF值、特征等)如表2所示。

表2   5个候选基因的17SNPs的信息

Tab 2  Information on the 17 SNPs for the five candidate genes

Candidate geneSNPChromosomePositionAllelesMAFFeature
NOS1APrs127423931q23.3162224586C/A0.32Intron2
rs1415259162085309C/T0.42Intron1
rs1415263162166043C/T0.48Intron2
rs1858232162303838G/A0.33Intron5
rs348624162335256C/T0.25Synonymous_exon9
rs6680461162255286G/T0.39Intron2
GSK3βrs3345583q13.33119813282G/A0.405′-flanking
rs6779828119775147C/T0.28Intron1
DAOArs391696513q33.2106103360C/T0.36Intergenic region
rs778294106142235C/T0.22Synonymous_exon4
rs947267106139662G/T0.49Intron3
DISC1rs15389791q42.2231896868C/T0.24Intron4
rs821577232067057G/T0.38Intron9
rs821633232148933C/T0.41Intron11
rs999710232010943G/A0.40Intron9
GRIN2Ars101453116p13.29855794G/A0.273′-UTR
rs14200409850397G/A0.423′-UTR

Note: UTR—untranslated region.

新窗口打开| 下载CSV


2.3 谷氨酸通路基因-基因交互作用对SZ患者快感缺失的预测作用

本研究利用GMDR建立对SZ患者愉快体验有预测作用的SNP位点交互作用模型,结果(图1)显示,由DAOA的rs3916965与DISC1的rs821577组成的2位点交互作用模型对SZ患者总体愉快体验能力(即TEPS总分)预测的CV一致性最大(即CV一致性=8),且预测准确率最高(65.19%,P=0.003)。而后,依据此交互作用模型将SZ患者分为高风险组和低风险组,并对其总体愉快体验能力进行组间比较,结果(图2)显示SZ高风险组患者的总体愉快体验能力低于其低风险组(t=3.443,P=0.000)。在调整了性别、年龄和受教育年限作为协变量后,采用GLM对GMDR建立的上述交互作用模型进行验证,结果显示rs3916965与rs821577交互作用对SZ患者的总体愉快体验能力具有预测作用(Wald χ2=12.671,P=0.013)。

图1

图1   GMDR分析预测SZ患者总体愉快体验能力的最优2位点交互作用模型

Note: The best identified model. In each cell, the left bar represents a positive score, and the right bar represents a negative score. High-risk cells are indicated by dark shading, and low-risk cells are indicated by light shading. Cells (representing genotype combinations) are categorized into ‘high’ and ‘low’ risk when the sum of the score is above and below zero, respectively.

Fig 1   The best 2-loci interaction model for predicting the overall pleasure experience ability of SZ patients by GMDR analysis


图2

图2   SZMDD患者高、低风险组总体、期待性愉快体验能力比较

Note: A. Comparison of the overall pleasure experience ability of SZ patients between the high-risk group and low-risk group. B. Comparison of the anticipatory pleasure experience ability of MDD patients between the high-risk group and low-risk group.

Fig 2   Comparison of the overall and anticipatory pleasure experience ability between high-risk and low-risk group of the SZ and MDD patients


2.4 谷氨酸通路基因-基因交互作用对MDD快感缺失的预测作用

本研究采用GMDR建立对MDD患者愉快体验有预测作用的SNP位点交互作用模型,结果(图3)显示,由NOS1AP的rs1858232和GRIN2A的rs1014531组成的2位点交互作用模型对MDD患者的期待性愉快体验能力预测的CV一致性最大(即CV一致性=9),且预测准确率最高(61.73%,P=0.037)。进一步依据此交互作用模型将MDD患者分为高风险组和低风险组,并对其期待性愉快体验能力进行组间比较,结果(图2)显示MDD高风险组患者期待性愉快体验能力低于其低风险组(t=3.471,P=0.001)。在调整了性别、年龄和受教育年限作为协变量,采用GLM对GMDR建立的上述交互作用模型进行验证,结果显示rs1858232与rs1014531交互作用对MDD患者的期待性愉快体验能力存在预测作用(Wald χ2=11.853,P=0.008)。

图3

图3   GMDR分析预测MDD患者期待性愉快体验能力的最优2位点交互作用模型

Note: The best identified model. In each cell, the left bar represents a positive score, and the right bar represents a negative score. High-risk cells are indicated by dark shading, and low-risk cells are indicated by light shading. Cells (representing genotype combinations) are categorized into ‘high’ and ‘low’ risk when the sum of the score is above and below zero, respectively.

Fig 3   The best 2-loci interaction model for predicting the anticipatory pleasure experience ability of MDD patients by GMDR analysis


3 讨论

本研究发现SZ与MDD患者的期待性和即时性愉快体验均低于健康对照者,与LI等24研究结论相一致。同时,该研究还发现MDD患者的期待性及即时性愉快体验与其抑郁症状严重程度、病程和住院次数显著相关,快感缺失在MDD患者中被认为是一种“状态”;而SZ患者的即时性愉快体验与临床症状相关,期待性愉快体验与临床特征无相关性,期待性快感缺失在SZ患者中则可能是一种“特质”。继而推测,期待性快感缺失在SZ患者中比在MDD患者中更稳定,这或可为本研究的结果(即SZ和MDD患者在期待性愉快体验上有边缘性统计学差异、在即时性愉快体验间差异无统计学意义)进行解释。

SZ及MDD是复杂且遗传模式不明确的多基因疾病,其表型均是由一个基因或多个基因的数个不同变异引起,且基因-基因交互作用在其发生中发挥了重要作用25。研究26发现DAOA的rs3916965位点与中国汉族人群SZ相关,系统评价27显示D-丝氨酸和甘氨酸作为抗精神病药物的辅助药物在一定程度上可改善阴性症状,提示DAOA基因可能与SZ患者的阴性症状存在一定的关联。TOMPPO等19报道,DISC1的rs821577次要等位基因的携带者在社交快感缺失方面的得分显著高于对照组,提示DISC1基因与快感缺失亦存在相关性。在本研究中我们也发现,DAOADISC1基因变异位点的相互作用可能参与了SZ患者快感缺失的发生;推测其原因,可能与DAOADISC1相互作用共同调节NMDAR以影响谷氨酸通路信号传导有关,但两者相互作用的具体机制仍需进一步探索。

NO与多种行为、认知和情绪过程的调节有关,如学习、运动、焦虑和抑郁等。动物研究28-29发现内源性NO参与了慢性非预期温和应激诱导的抑郁,而靶向PSD-95/nNOS接头的小分子抑制剂则可在小鼠中发挥抗抑郁作用。由于NOS1AP能够改变神经系统NO的产生活性,继而提示NOS1AP可能与抑郁症状的发生密切相关。同时,本研究发现NOS1APGRIN2A基因的变异位点交互作用可影响MDD患者的期待性愉快体验;推测其原因,可能是NOS1APGRIN2A相互作用影响NO的产生进而参与快感缺失的发生,但其中具体的神经生物学机制需进一步研究阐明。

此外,本研究尚存在一定的局限性:① 样本量偏小,后续需扩大样本量进行验证。② 研究未控制药物的使用,而药物对快感缺失具有一定影响,未来需纳入未服药患者进行分析。③ 不同亚型的SZ、MDD患者的快感缺失的严重程度有所不同,后续需按照疾病亚型开展分层分析。④ 仅针对基因交互作用与快感缺失的关联进行研究,且其具体作用机制仍需进一步探索。⑤ 未纳入环境因素如压力、应激或童年创伤事件等,后续需进一步研究基因-环境交互作用在快感缺失发生中的作用。

综上所述,本研究发现谷氨酸通路基因-基因交互作用可影响SZ、MDD患者的愉快体验能力,提示谷氨酸系统在快感缺失的发生中具有重要的作用,这将为快感缺失的临床治疗及药物开发提供新的方向。

作者贡献声明

易正辉负责研究设计,黄欣欣、吕钦谕、胡国芹、鲍晨曦参与数据收集,黄欣欣、刘超、张瑶参与数据分析,黄欣欣、刘超参与论文写作与修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The research design was conducted by YI Zhenghui. Data collection were conducted by HUANG Xinxin, Lü Qinyu, HU Guoqin and BAO Chenxi. Data analysis were performed by HUANG Xinxin, LIU Chao and ZHANG Yao. The manuscript was drafted and revised by HUANG Xinxin and LIU Chao. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

LAMBERT C, SILVA S D, CENITI A K, et al. Anhedonia in depression and schizophrenia: a transdiagnostic challenge[J]. CNS Neurosci Ther, 2018, 24(7): 615-623.

[本文引用: 1]

BERRIDGE K C, KRINGELBACH M L. Affective neuroscience of pleasure: reward in humans and animals[J]. Psychopharmacology, 2008, 199(3): 457-480.

[本文引用: 1]

LEE Y, SON H, KIM G, et al. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice[J]. J Psychiatry Neurosci, 2013, 38(3): 183-191.

[本文引用: 1]

KÜÇÜKIBRAHIMOĞLU E, SAYGIN M Z, CALIŞKAN M, et al. The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression[J]. Eur J Clin Pharmacol, 2009, 65(6): 571-577.

[本文引用: 1]

VEERMAN S R T, SCHULTE P F J, DE HAAN L. The glutamate hypothesis: a pathogenic pathway from which pharmacological interventions have emerged[J]. Pharmacopsychiatry, 2014, 47(4/5): 121-130.

[本文引用: 1]

BELFORTE J E, ZSIROS V, SKLAR E R, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes[J]. Nat Neurosci, 2010, 13(1): 76-83.

[本文引用: 1]

ZHANG M M, KONG X R, CHEN J, et al. Dysfunction of GluN3A subunit is involved in depression-like behaviors through synaptic deficits[J]. J Affect Disord, 2023, 332: 72-82.

[本文引用: 1]

SERRETTI A. Anhedonia and depressive disorders[J]. Clin Psychopharmacol Neurosci, 2023, 21(3): 401-409.

[本文引用: 1]

CHUMAKOV I, BLUMENFELD M, GUERASSIMENKO O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia[J]. Proc Natl Acad Sci U S A, 2002, 99(21): 13675-13680.

[本文引用: 1]

AUTRY A E, ADACHI M, NOSYREVA E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J]. Nature, 2011, 475(7354): 91-95.

[本文引用: 1]

WEI J, GRAZIANE N M, WANG H T, et al. Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia-1[J]. Biol Psychiatry, 2014, 75(5): 414-424.

[本文引用: 1]

SEIRA O, DEL RÍO J A. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration[J]. Mol Neurobiol, 2014, 49(2): 931-944.

[本文引用: 1]

CHEN M H, KAO C F, TSAI S J, et al. Treatment response to low-dose ketamine infusion for treatment-resistant depression: a gene-based genome-wide association study[J]. Genomics, 2021, 113(2): 507-514.

[本文引用: 2]

HU G Q, YANG C Q, ZHAO L, et al. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 187-193.

[本文引用: 1]

LI Z, SHI H S, ELIS O, et al. The structural invariance of the Temporal Experience of Pleasure Scale across time and culture[J]. Psych J, 2018, 7(2): 59-67.

[本文引用: 1]

CHAN R C, SHI Y F, LAI M K, et al. The Temporal Experience of Pleasure Scale (TEPS): exploration and confirmation of factor structure in a healthy Chinese sample[J]. PLoS One, 2012, 7(4): e35352.

[本文引用: 1]

CHAN R C, WANG Y, HUANG J, et al. Anticipatory and consummatory components of the experience of pleasure in schizophrenia: cross-cultural validation and extension[J]. Psychiatry Res, 2010, 175(1/2): 181-183.

[本文引用: 1]

JAGANNATH V, THEODORIDOU A, GERSTENBERG M, et al. Prediction analysis for transition to schizophrenia in individuals at clinical high risk for psychosis: the relationship of DAO, DAOA, and NRG1 variants with negative symptoms and cognitive deficits[J]. Front Psychiatry, 2017, 8: 292.

[本文引用: 1]

TOMPPO L, HENNAH W, MIETTUNEN J, et al. Association of variants in DISC1 with psychosis-related traits in a large population cohort[J]. Arch Gen Psychiatry, 2009, 66(2): 134-141.

[本文引用: 1]

CHEAH S Y, LAWFORD B R, YOUNG R M, et al. Association of NOS1AP variants and depression phenotypes in schizophrenia[J]. J Affect Disord, 2015, 188: 263-269.

[本文引用: 1]

LOU X Y, CHEN G B, YAN L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence[J]. Am J Hum Genet, 2007, 80(6): 1125-1137.

[本文引用: 1]

HOU T T, LIN F, BAI S S, et al. Generalized multifactor dimensionality reduction approaches to identification of genetic interactions underlying ordinal traits[J]. Genet Epidemiol, 2019, 43(1): 24-36.

[本文引用: 1]

HUANG Y Q, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224.

[本文引用: 2]

LI Y H, MOU X D, JIANG W H, et al. A comparative study of anhedonia components between major depression and schizophrenia in Chinese populations[J]. Ann Gen Psychiatry, 2015, 14: 24.

[本文引用: 1]

MEI H, CUCCARO M L, MARTIN E R. Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables[J]. Am J Hum Genet, 2007, 81(6): 1251-1261.

[本文引用: 1]

WANG X Y, HE G, GU N F, et al. Association of G72/G30 with schizophrenia in the Chinese population[J]. Biochem Biophys Res Commun, 2004, 319(4): 1281-1286.

[本文引用: 1]

TUOMINEN H J, TIIHONEN J, WAHLBECK K. Glutamatergic drugs for schizophrenia[J]. Cochrane Database Syst Rev, 2006(2): CD003730.

[本文引用: 1]

YAZIR Y, UTKAN T, ARICIOGLU F. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress[J]. Basic Clin Pharmacol Toxicol, 2012, 111(3): 154-160.

[本文引用: 1]

DOUCET M V, LEVINE H, DEV K K, et al. Small-molecule inhibitors at the PSD-95/nNOS interface have antidepressant-like properties in mice[J]. Neuropsychopharmacology, 2013, 38(8): 1575-1584.

[本文引用: 1]

/