1 |
LAMBERT C, SILVA S D, CENITI A K, et al. Anhedonia in depression and schizophrenia: a transdiagnostic challenge[J]. CNS Neurosci Ther, 2018, 24(7): 615-623.
|
2 |
BERRIDGE K C, KRINGELBACH M L. Affective neuroscience of pleasure: reward in humans and animals[J]. Psychopharmacology, 2008, 199(3): 457-480.
|
3 |
LEE Y, SON H, KIM G, et al. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice[J]. J Psychiatry Neurosci, 2013, 38(3): 183-191.
|
4 |
KÜÇÜKIBRAHIMOĞLU E, SAYGIN M Z, CALIŞKAN M, et al. The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression[J]. Eur J Clin Pharmacol, 2009, 65(6): 571-577.
|
5 |
VEERMAN S R T, SCHULTE P F J, DE HAAN L. The glutamate hypothesis: a pathogenic pathway from which pharmacological interventions have emerged[J]. Pharmacopsychiatry, 2014, 47(4/5): 121-130.
|
6 |
BELFORTE J E, ZSIROS V, SKLAR E R, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes[J]. Nat Neurosci, 2010, 13(1): 76-83.
|
7 |
ZHANG M M, KONG X R, CHEN J, et al. Dysfunction of GluN3A subunit is involved in depression-like behaviors through synaptic deficits[J]. J Affect Disord, 2023, 332: 72-82.
|
8 |
SERRETTI A. Anhedonia and depressive disorders[J]. Clin Psychopharmacol Neurosci, 2023, 21(3): 401-409.
|
9 |
CHUMAKOV I, BLUMENFELD M, GUERASSIMENKO O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia[J]. Proc Natl Acad Sci U S A, 2002, 99(21): 13675-13680.
|
10 |
AUTRY A E, ADACHI M, NOSYREVA E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J]. Nature, 2011, 475(7354): 91-95.
|
11 |
WEI J, GRAZIANE N M, WANG H T, et al. Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia-1[J]. Biol Psychiatry, 2014, 75(5): 414-424.
|
12 |
SEIRA O, DEL RÍO J A. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration[J]. Mol Neurobiol, 2014, 49(2): 931-944.
|
13 |
CHEN M H, KAO C F, TSAI S J, et al. Treatment response to low-dose ketamine infusion for treatment-resistant depression: a gene-based genome-wide association study[J]. Genomics, 2021, 113(2): 507-514.
|
14 |
HU G Q, YANG C Q, ZHAO L, et al. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 187-193.
|
15 |
LI Z, SHI H S, ELIS O, et al. The structural invariance of the Temporal Experience of Pleasure Scale across time and culture[J]. Psych J, 2018, 7(2): 59-67.
|
16 |
CHAN R C, SHI Y F, LAI M K, et al. The Temporal Experience of Pleasure Scale (TEPS): exploration and confirmation of factor structure in a healthy Chinese sample[J]. PLoS One, 2012, 7(4): e35352.
|
17 |
CHAN R C, WANG Y, HUANG J, et al. Anticipatory and consummatory components of the experience of pleasure in schizophrenia: cross-cultural validation and extension[J]. Psychiatry Res, 2010, 175(1/2): 181-183.
|
18 |
JAGANNATH V, THEODORIDOU A, GERSTENBERG M, et al. Prediction analysis for transition to schizophrenia in individuals at clinical high risk for psychosis: the relationship of DAO, DAOA, and NRG1 variants with negative symptoms and cognitive deficits[J]. Front Psychiatry, 2017, 8: 292.
|
19 |
TOMPPO L, HENNAH W, MIETTUNEN J, et al. Association of variants in DISC1 with psychosis-related traits in a large population cohort[J]. Arch Gen Psychiatry, 2009, 66(2): 134-141.
|
20 |
CHEAH S Y, LAWFORD B R, YOUNG R M, et al. Association of NOS1AP variants and depression phenotypes in schizophrenia[J]. J Affect Disord, 2015, 188: 263-269.
|
21 |
LOU X Y, CHEN G B, YAN L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence[J]. Am J Hum Genet, 2007, 80(6): 1125-1137.
|
22 |
HOU T T, LIN F, BAI S S, et al. Generalized multifactor dimensionality reduction approaches to identification of genetic interactions underlying ordinal traits[J]. Genet Epidemiol, 2019, 43(1): 24-36.
|
23 |
HUANG Y Q, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224.
|
24 |
LI Y H, MOU X D, JIANG W H, et al. A comparative study of anhedonia components between major depression and schizophrenia in Chinese populations[J]. Ann Gen Psychiatry, 2015, 14: 24.
|
25 |
MEI H, CUCCARO M L, MARTIN E R. Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables[J]. Am J Hum Genet, 2007, 81(6): 1251-1261.
|
26 |
WANG X Y, HE G, GU N F, et al. Association of G72/G30 with schizophrenia in the Chinese population[J]. Biochem Biophys Res Commun, 2004, 319(4): 1281-1286.
|
27 |
TUOMINEN H J, TIIHONEN J, WAHLBECK K. Glutamatergic drugs for schizophrenia[J]. Cochrane Database Syst Rev, 2006(2): CD003730.
|
28 |
YAZIR Y, UTKAN T, ARICIOGLU F. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress[J]. Basic Clin Pharmacol Toxicol, 2012, 111(3): 154-160.
|
29 |
DOUCET M V, LEVINE H, DEV K K, et al. Small-molecule inhibitors at the PSD-95/nNOS interface have antidepressant-like properties in mice[J]. Neuropsychopharmacology, 2013, 38(8): 1575-1584.
|