›› 2012, Vol. 32 ›› Issue (9): 1145-.doi: 10.3969/j.issn.1674-8115.2012.09.006

• 述评 • 上一篇    下一篇

白血病细胞分化与凋亡的化学生物学研究

陈国强, 赵 倩, 吴英理, 王立顺   

  1. 上海交通大学 医学院教育部细胞分化与凋亡重点实验室, 上海 200025
  • 出版日期:2012-09-28 发布日期:2012-09-29
  • 作者简介:陈国强(1963—), 男, 教授, 博士, 博士生导师, 现任上海交通大学医学院院长、上海交通大学副校长、教育部细胞分化与凋亡重点实验室主任;电子信箱: chengq@shsmu.edu.cn。
  • 基金资助:

    国家重大科学研究计划项目(2009CB918404);国家自然科学基金重大研究计划(90813034);国家自然科学基金重点项目(30630034);科技部863计划(2008AA02Z301);国家自然科学基金面上项目(30870979, 30870523, 30871016, 30973462, 30971094, 30971274, 30971276, 30971488, 30971107, 81070433, 81071668, 81070431, 81172521, 81171888, 81170505, 31100980, 31170783);国家自然科学基金培育项目(91013008);上海市科委重点项目(08JC1413400, 08JC1413500, 08JC1413700)。

Chemical biology study for differentiation and apoptosis of leukemic cell

CHEN Guo-qiang, ZHAO Qian, WU Ying-li, WANG Li-shun   

  1. Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
  • Online:2012-09-28 Published:2012-09-29

摘要:

近年来,以活性小分子化合物作为探针研究重要细胞生命活动规律为目的的化学生物学得到蓬勃发展,化学小分子探针日益成为生物医学研究的重要工具。本实验室以白血病细胞为模型,应用天然或合成的小分子化合物作为探针,在白血病细胞分化和凋亡的分子机制方面取得了系列发现。在白血病细胞分化方面的研究发现:天然小分子化合物腺花素可以诱导急性包括早幼粒白血病(APL)在内的多种急性粒细胞白血病(AML)细胞分化,减少白血病起始细胞(LIC)的数量,并显著延长APL白血病小鼠的生存时间。利用生物素标记的腺花素为探针,发现peroxiredoxin (PrxⅠ/Ⅱ) 是腺花素的效应靶蛋白并揭示了腺花素和PrxⅠ/Ⅱ的作用模式,即腺花素以共价方式结合在PrxⅠ的cys173上并抑制其过氧化物酶活性, 导致细胞内H2O2升高并活化ERK信号途径及上调C/EBPβ;揭示了白血病细胞诱导分化的一条新途径,也充分体现了化学与生物学结合的力量。相关研究还发现:一种天然小分子化合物pharicin B能够通过稳定RARα/ PMLRARα蛋白,AML细胞系以及初发AML患者的原代细胞中增强全反式维甲酸(ATRA)诱导的细胞分化效应,并且能够恢复部分耐药的APL细胞对ATRA的敏感性。在白血病细胞凋亡方面的研究发现:纳摩尔浓度的喜树碱类衍生物NSC606985以时间-剂量依赖方式诱导AML细胞凋亡,并通过先后依次引起PKCδ蛋白剪切激活、线粒体跨膜电位崩塌和 Caspase-3活化,从而诱导AML细胞发生凋亡;在此基础上进一步以NSC606985为探针,综合利用磷酸化修饰组学、定量蛋白质组学和亚细胞蛋白质组学的策略,对白血病细胞的凋亡进行系统性分析,绘制了NSC606985诱导白血病细胞凋亡的蛋白组学变化;以此为基础的研究发现,以ANP32B为代表的多个潜在的细胞凋亡分子,并对其中的NDRG1,ANP32B蛋白与细胞凋亡的关系进行了深入研究。更重要的是:体内研究发现NSC606985能够快速诱导AML小鼠外周血和骨髓、肝脾组织中白血病细胞凋亡,并有效延长AML小鼠的生存时间,为急性白血病的治疗学研究提供了新的先导化合物。白血病细胞分化与凋亡的新机制项目获国家自然科学二等奖。

关键词: 化学生物学, 白血病, 细胞分化, 细胞凋亡

Abstract:

Chemical biology is a scientific interdiscipline spanning the fields of chemistry and biology that involves the application of chemical tools, often compounds, to the study and manipulation of biological systems. Remarkable achievements have been obtained on chemical biology which aims to study important biological events by using small molecular active compounds as a probe thus small active compound has become effective tools in the research of biomedicine. Our research group has achieved a series of results in the molecular mechanism study of leukemic cell differentiation and apoptosis through using small molecular active compounds. We discovered that adenanthin, a diterpenoid compound extracted from Rabdosia adenantha, induces APL-like cell differentiation, represses tumor growth in vivo and prolongs the survival of mouse APL models that are sensitive and resistant to retinoic acid. The chemical probe biotin-tagged adenanthin was designed on the basis of structure-activity relationship data. Further study demonstrated adenanthin directly targets the conserved resolving cysteines of PrxⅠ and Prx Ⅱ and inhibits their peroxidase activities. Consequently, cellular H2O2 is elevated, leading to the activation of extracellular signal regulated kinases and increased transcription of C/EBPβ, which contributes to adenanthin-induced differentiation. In another study we identified a novel natural ent-kaurene diterpenoid derived from I. pharicus leaves called pharicin B that can rapidly stabilize RARα as well as PML-RARα protein and enhances ATRA-dependent transcriptional activity of RARα. Additionally, pharicin B enhances differentiation-enhancing effect of ATRA in AML cell lines, some primary leukemic cells and overcomes retinoid resistance in ATRA-resistant subclones. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients.Based on our previous study that NSC606985, a novel camptothecin analog, could effectively induce apoptosis in AML cells in a time- and concentration-dependent manner, sequentially through proteolytic activation of protein kinase Cδ (PKCδ), loss of mitochondrial Δψm and caspase-3 activation, we further employed NSC606985 as a molecule probe and systemically investigated the mechanisms of apoptotic induction in AML cells and the prospects of its clinical application in vitro and in vivo. We analyzed protein expression profiles of NSC606985-induced apoptotic AML cells by systematically using phosphoproteomics, quantitive proteomics as well as subcellular proteomics analytical strategy. As a result, we uncovered a series of deregulated proteins including translocated ones during apoptosis, most of which had not been reported previously. Among these apoptotic proteins we identified, the function of ANP32B as well as NDRG1 and their relationship with NSC606985-triggered AML cell apoptosis were further investigated respectively. Moreover, the in vivo study demonstrated that NSC606985 rapidly induced apoptosis of leukemic cells in peripheral blood, bone marrow, liver and spleen, and administration of NSC606985 significantly prolonged the survival of AML mice. The above results provide new leading compound for the acute leukemia therapy. The study of "New Mechanism for Differentiation and Apoptosis of Leukemic cell" wins the National Awards of Natural Sciences (Second prize) in 2010.

Key words: chemical biology, leukemia, differentiation, apoptosis