1 |
LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564.
|
2 |
WANG Z L, XU M, HU Z G, et al. Sex-specific prevalence of fatty liver disease and associated metabolic factors in Wuhan, south central China[J]. Eur J Gastroenterol Hepatol, 2014, 26(9): 1015-1021.
|
3 |
LONG M T, PEDLEY A, MASSARO J M, et al. A simple clinical model predicts incident hepatic steatosis in a community-based cohort: the Framingham Heart Study[J]. Liver Int, 2018, 38(8): 1495-1503.
|
4 |
ARSHAD T, GOLABI P, PAIK J, et al. Prevalence of nonalcoholic fatty liver disease in the female population[J]. Hepatol Commun, 2018, 3(1): 74-83.
|
5 |
KLAIR J S, YANG J D, ABDELMALEK M F, et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease[J]. Hepatology, 2016, 64(1): 85-91.
|
6 |
PARK S H, PARK Y E, LEE J, et al. Lack of association between early menopause and non-alcoholic fatty liver disease in postmenopausal women[J]. Climacteric, 2020, 23(2): 173-177.
|
7 |
JABALLAH A, SOLTANI I, BAHIA W, et al. The relationship between menopause and metabolic syndrome: experimental and bioinformatics analysis[J]. Biochem Genet, 2021, 59(6): 1558-1581.
|
8 |
MUMUSOGLU S, YILDIZ B O. Metabolic syndrome during menopause[J]. Curr Vasc Pharmacol, 2019, 17(6): 595-603.
|
9 |
CHUNG S I, RYU S N, KANG M Y. Changes in bone metabolism and antioxidant defense systems in menopause-induced rats fed bran extract from dark purple rice (Oryza sativa L. Cv. Superjami)[J]. Nutrients, 2021, 13(9): 2926.
|
10 |
DUPUIS M L, PAGANO M T, PIERDOMINICI M, et al. The role of vitamin D in autoimmune diseases: could sex make the difference?[J]. Biol Sex Differ, 2021, 12(1): 12.
|
11 |
MELGUIZO-RODRÍGUEZ L, COSTELA-RUIZ V J, GARCÍA-RECIO E, et al. Role of vitamin D in the metabolic syndrome[J]. Nutrients, 2021, 13(3): 830.
|
12 |
WAN H, ZHANG K, WANG Y Y, et al. The associations between gonadal hormones and serum uric acid levels in men and postmenopausal women with diabetes[J]. Front Endocrinol (Lausanne), 2020, 11: 55.
|
13 |
WANG X H, JIANG W R, ZHANG M Y, et al. The visceral fat area to leg muscle mass ratio is significantly associated with the risk of hyperuricemia among women: a cross-sectional study[J]. Biol Sex Differ, 2021, 12(1): 17.
|
14 |
刘勤, 牛春燕. 由“二次打击”到“多重打击”: 发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178.
|
|
LIU Q, NIU C Y. From "two hit theory" to "multiple hit theory": implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chinese Journal of Digestology, 2019, 27(19): 1171-1178.
|
15 |
YARIBEYGI H, FARROKHI F R, BUTLER A E, et al. Insulin resistance: review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161.
|
16 |
VENETSANAKI V, POLYZOS S A. Menopause and non-alcoholic fatty liver disease: a review focusing on therapeutic perspectives[J]. Curr Vasc Pharmacol, 2019, 17(6): 546-555.
|
17 |
WHITCROFT S, HERRIOT A. Insulin resistance and management of the menopause: a clinical hypothesis in practice[J]. Menopause Int, 2011, 17(1): 24-28.
|
18 |
DE MUTSERT R, GAST K, WIDYA R, et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study[J]. Metab Syndr Relat Disord, 2018, 16(1): 54-63.
|
19 |
ZENG X, XIE Y J, LIU Y T, et al. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502: 214-221.
|
20 |
SEIDU T, MCWHORTER P, MYER J, et al. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice[J]. J Endocrinol, 2021, 250(2): 49-65.
|
21 |
WANG J, WU D C, GUO H, et al. Hyperandrogenemia and insulin resistance: the chief culprit of polycystic ovary syndrome[J]. Life Sci, 2019, 236: 116940.
|
22 |
KUR P, KOLASA-WOŁOSIUK A, MISIAKIEWICZ-HAS K, et al. Sex hormone-dependent physiology and diseases of liver[J]. Int J Environ Res Public Health, 2020, 17(8): 2620.
|
23 |
DELLA T S. Beyond the x factor: relevance of sex hormones in NAFLD pathophysiology[J]. Cells, 2021, 10(9): 2502.
|
24 |
XIA F Z, XU X, ZHAI H L, et al. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats[J]. Reprod Biol Endocrinol, 2013, 11: 106.
|
25 |
QU X Q, DONNELLY R. Sex hormone-binding globulin (SHBG) as an early biomarker and therapeutic target in polycystic ovary syndrome[J]. Int J Mol Sci, 2020, 21(21): 8191.
|
26 |
SOWERS M, DERBY C, JANNAUSCH M L, et al. Insulin resistance, hemostatic factors, and hormone interactions in pre- and perimenopausal women: SWAN[J]. J Clin Endocrinol Metab, 2003, 88(10): 4904-4910.
|
27 |
YAMAZAKI H, KUSHIYAMA A, SAKODA H, et al. Protective effect of sex hormone-binding globulin against metabolic syndrome: in vitro evidence showing anti-inflammatory and lipolytic effects on adipocytes and macrophages[J]. Mediators Inflamm, 2018, 2018: 3062319.
|
28 |
DISTEFANO J K. NAFLD and NASH in postmenopausal women: implications for diagnosis and treatment[J]. Endocrinology, 2020, 161(10): bqaa134.
|
29 |
YANG M, LIU Q L, HUANG T L, et al. Dysfunction of estrogen-related receptor α-dependent hepatic VLDL secretion contributes to sex disparity in NAFLD/NASH development[J]. Theranostics, 2020, 10(24): 10874-10891.
|
30 |
BITIRIM C V, OZER Z B, AKCALI K C. Estrogen receptor α regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells[J]. Peer J, 2021, 9: e12071.
|
31 |
李凤娟, 魏苏宁, 王绿娅, 等. 雌激素抑制脂滴包被蛋白perilipin 2减少肝细胞脂质沉积[J]. 心肺血管病杂志, 2018, 37(7): 687-691.
|
|
LI F J, WEI S N, WANG L Y, et al. Estrogen reduces lipid deposition in liver cells by inhibiting perilipin 2[J]. Journal of Cardiovascular and Pulmonary Diseases, 2018, 37(7): 687-691.
|
32 |
TRAMUNT B, SMATI S, GRANDGEORGE N, et al. Sex differences in metabolic regulation and diabetes susceptibility[J]. Diabetologia, 2020, 63(3): 453-461.
|
33 |
IWASA T, MATSUZAKI T, MAYILA Y, et al. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats[J]. Neuropeptides, 2019, 75: 49-57.
|
34 |
MA H, SPRECHER H W, KOLATTUKUDY P E. Estrogen-induced production of a peroxisome proliferator-activated receptor (PPAR) ligand in a PPARγ-expressing tissue[J]. J Biol Chem, 1998, 273(46): 30131-30138.
|
35 |
NIRANJAN M K, KOIRI R K, SRIVASTAVA R. Expression of estrogen receptor α in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: involvement of anti-oxidant system and estrogen[J]. Stress, 2021, 24(3): 261-272.
|
36 |
BESSE-PATIN A, LÉVEILLÉ M, OROPEZA D, et al. Estrogen signals through peroxisome proliferator-activated receptor‑γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease[J]. Gastroenterology, 2017, 152(1): 243-256.
|
37 |
HIGASHI T, FRIEDMAN S L, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42.
|
38 |
CORTES E, LACHOWSKI D, RICE A, et al. Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor[J]. Oncogene, 2019, 38(16): 2910-2922.
|
39 |
LEE Y H, SON J Y, KIM K S, et al. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in sprague-dawley rats[J]. Int J Mol Sci, 2019, 20(15): 3709.
|
40 |
SHIMIZU I, MIZOBUCHI Y, YASUDA M, et al. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro[J]. Gut, 1999, 44(1): 127-136.
|
41 |
LOBO R A. Hormone-replacement therapy: current thinking[J]. Nat Rev Endocrinol, 2017, 13(4): 220-231.
|
42 |
PAPAEFTHYMIOU A, DOULBERIS M, KARAFYLLIDOU K, et al. Effect of spironolactone on pharmacological treatment of nonalcoholic fatty liver disease[J]. Minerva Endocrinol (Torino), 2021. DOI: 10. 23736/S2724-6507.21.03564-8.
|
43 |
LI H, JIA E N, HONG Y, et al. Phytoestrogens and NAFLD: possible mechanisms of action[J]. Mini Rev Med Chem, 2020, 20(7): 578-583.
|
44 |
ZAMANI-GARMSIRI F, HASHEMNIA S M R, SHABANI M, et al. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice[J]. J Nutr Biochem, 2021, 87: 108505.
|
45 |
LUO Z H, LIU Z W, MAO Y, et al. Cajanolactone A, a stilbenoid from Cajanus cajan, prevents ovariectomy-induced obesity and liver steatosis in mice fed a regular diet[J]. Phytomedicine, 2020, 78: 153290.
|
46 |
CHEN Y R, QUE R Y, ZHANG N, et al. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling[J]. Mol Biol Rep, 2021, 48(12): 7853-7863.
|
47 |
LIN L B, ZHOU M G, QUE R Y, et al. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor‑β/NLRP3 inflammasome pathway[J]. Biochem Cell Biol, 2021, 99(5): 666-674.
|