1 |
ISAKOVIĆ J, ŠIMUNIĆ I, JAGEČIĆ D, et al. Overview of neural tube defects: gene-environment interactions, preventative approaches and future perspectives[J]. Biomedicines, 2022, 10(5): 965.
|
2 |
KANCHERLA V. Neural tube defects: a review of global prevalence, causes, and primary prevention[J]. Childs Nerv Syst, 2023, 39(7): 1703-1710.
|
3 |
RAYON T, STAMATAKI D, PEREZ-CARRASCO R, et al. Species-specific pace of development is associated with differences in protein stability[J]. Science, 2020, 369(6510): eaba7667.
|
4 |
ZAGANJOR I, SEKKARIE A, TSANG B L, et al. Describing the prevalence of neural tube defects worldwide: a systematic literature review[J]. PLoS One, 2016, 11(4): e0151586.
|
5 |
KANG L Y, GUO Z R, SHANG W J, et al. Perinatal prevalence of birth defects in the Mainland of China, 2000—2021: a systematic review and meta-analysis[J]. World J Pediatr, 2024. DOI: 10.1007/s12519-023-00786-8.
|
6 |
MOORE C A, LI S, LI Z, et al. Elevated rates of severe neural tube defects in a high-prevalence area in northern China[J]. Am J Med Genet, 1997, 73(2): 113-118.
|
7 |
LI Z W, REN A G, ZHANG L, et al. Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China[J]. Birth Defects Res A Clin Mol Teratol, 2006, 76(4): 237-240.
|
8 |
VAN GOOL J D, HIRCHE H, LAX H, et al. Folic acid and primary prevention of neural tube defects: a review[J]. Reprod Toxicol, 2018, 80: 73-84.
|
9 |
YU J, WANG L, PEI P, et al. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects[J]. Epigenetics Chromatin, 2019, 12(1): 76.
|
10 |
ERNST J, BAR-JOSEPH Z. STEM: a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7: 191.
|
11 |
CAO R, LI J Q, ZHANG L, et al. Analysis of genes associated with both neural tube defects and neuroectodermal tumors[J]. Med Sci Monit, 2022, 28: e936079.
|
12 |
SUN Y Q, ZHANG J, WANG Y F, et al. miR-222-3p is involved in neural tube closure by directly targeting Ddit4 in RA induced NTDs mouse model[J]. Cell Cycle, 2021, 20(22): 2372-2386.
|
13 |
CHAI Z, YANG L H, YU B F, et al. p38 mitogen-activated protein kinase-dependent regulation of SRC-3 and involvement in retinoic acid receptor α signaling in embryonic cortical neurons[J]. IUBMB Life, 2009, 61(6): 670-678.
|
14 |
LIU J G, ZHOU R, HE Q R, et al. Calmodulin kinase Ⅱ activation of mitogen-activated protein kinase in PC12 cell following all-trans retinoic acid treatment[J]. Neurotoxicology, 2009, 30(4): 599-604.
|
15 |
EAGLESON G, FERREIRO B, HARRIS W A. Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain[J]. J Neurobiol, 1995, 28(2): 146-158.
|
16 |
HALLONET M, HOLLEMANN T, WEHR R, et al. Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain[J]. Development, 1998, 125(14): 2599-2610.
|
17 |
PENG L, NIU Z M, CHEN J P, et al. Association of genetic polymorphisms of VAX1, MAFB, and NTN1 with nonsyndromic cleft lip with or without cleft palate in Chinese population[J]. Mol Genet Genomics, 2022, 297(2): 553-559.
|
18 |
HE W H, KANG Y B, ZHU W, et al. FOXF2 acts as a crucial molecule in tumours and embryonic development[J]. Cell Death Dis, 2020, 11(6): 424.
|
19 |
EVERSON J L, FINK D M, YOON J W, et al. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis[J]. Development, 2017, 144(11): 2082-2091.
|
20 |
WU Q, LI W, YOU C G. The regulatory roles and mechanisms of the transcription factor FOXF2 in human diseases[J]. PeerJ, 2021, 9: e10845.
|
21 |
XIA Z, OUYANG D, LI Q, et al. The expression, functions, interactions and prognostic values of PTPRZ1: a review and bioinformatic analysis[J]. J Cancer, 2019, 10(7): 1663-1674.
|
22 |
KUBOYAMA K, FUJIKAWA A, SUZUKI R, et al. Role of chondroitin sulfate (CS) modification in the regulation of protein-tyrosine phosphatase receptor type Z (PTPRZ) activity: pleiotrophin-PTPRZ-A signaling is involved in oligodendrocyte differentiation[J]. J Biol Chem, 2016, 291(35): 18117-18128.
|
23 |
KLAUSMEYER A, GARWOOD J, FAISSNER A. Differential expression of phosphacan/RPTPβ isoforms in the developing mouse visual system[J]. J Comp Neurol, 2007, 504(6): 659-679.
|
24 |
ROLL L, LESSMANN K, BRÜSTLE O, et al. Cerebral organoids maintain the expression of neural stem cell-associated glycoepitopes and extracellular matrix[J]. Cells, 2022, 11(5): 760.
|
25 |
PASTOR M, FERNÁNDEZ-CALLE R, GERONIMO B D, et al. Development of inhibitors of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) as candidates for CNS disorders[J]. Eur J Med Chem, 2018, 144: 318-329.
|
26 |
QIE S, SANG N. Stanniocalcin 2 (STC2): a universal tumour biomarker and a potential therapeutical target[J]. J Exp Clin Cancer Res, 2022, 41(1): 161.
|
27 |
JEON Y, SHIN J E, KWON M, et al. In vivo gene delivery of STC2 promotes axon regeneration in sciatic nerves[J]. Mol Neurobiol, 2021, 58(2): 750-760.
|
28 |
CAO Y Z, JIA Q H, XING Y X, et al. STC2 inhibits hepatic lipid synthesis and correlates with intramuscular fatty acid composition, body weight and carcass traits in chickens[J]. Animals, 2024, 14(3): 383.
|
29 |
GAO H J, WU G Y, SPENCER T E, et al. Select nutrients in the ovine uterine lumen. Ⅲ. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses[J]. Biol Reprod, 2009, 80(3): 602-609.
|
30 |
KIM J J, KHALID O, NAMAZI A, et al. Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells[J]. Stem Cells, 2014, 32(6): 1468-1479.
|
31 |
KOKKONEN H, SIREN A, MÄÄTTÄ T, et al. Identification of microduplications at Xp21.2 and Xq13.1 in neurodevelopmental disorders[J]. Mol Genet Genomic Med, 2021, 9(12): e1703.
|
32 |
NURCOMBE V, FORD M D, WILDSCHUT J A, et al. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan[J]. Science, 1993, 260(5104): 103-106.
|