1 |
LI H R, LI H Z, YUAN L J, et al. The psc-CVM assessment system: a three-stage type system for CVM assessment based on deep learning[J]. BMC Oral Health, 2023, 23(1): 557.
|
2 |
FISHMAN L S. Chronological versus skeletal age, an evaluation of craniofacial growth[J]. Angle Orthod, 1979, 49(3): 181-189.
|
3 |
ALKHAL H A, WONG R W K, RABIE A B. Correlation between chronological age, cervical vertebral maturation and Fishman's skeletal maturity indicators in southern Chinese[J]. Angle Orthod, 2008, 78(4): 591-596.
|
4 |
GANDINI P, MANCINI M, ANDREANI F. A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation[J]. Angle Orthod, 2006, 76(6): 984-989.
|
5 |
BACCETTI T, FRANCHI L, JR MCNAMARA J A. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth[J]. Angle Orthod, 2002, 72(4): 316-323.
|
6 |
ASLAN M S, ALI A, RARA H, et al. An automated vertebra identification and segmentation in CT images[C]//2010 IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010: 233-236.
|
7 |
LIM P H, BAGCI U, BAI L. Introducing Willmore flow into level set segmentation of spinal vertebrae[J]. IEEE Trans Biomed Eng, 2013, 60(1): 115-122.
|
8 |
YAO J H, BURNS J E, FORSBERG D, et al. A multi-center milestone study of clinical vertebral CT segmentation[J]. Comput Med Imaging Graph, 2016, 49: 16-28.
|
9 |
SHIM J H, KIM W S, KIM K G, et al. Evaluation of U-Net models in automated cervical spine and cranial bone segmentation using X-ray images for traumatic atlanto-occipital dislocation diagnosis[J]. Sci Rep, 2022, 12(1): 21438.
|
10 |
ZHANG F, ZHENG L Y, CHEN Y R, et al. Fully automatic cervical vertebrae segmentation via enhanced U2-Net[C]//2023 IEEE International Conference on Image Processing.Kuala Lumpur, Malaysia: IEEE, 2023: 2900-2904.
|
11 |
ZHANG L, WANG H. A novel segmentation method for cervical vertebrae based on PointNet++ and converge segmentation[J]. Comput Methods Programs Biomed, 2021, 200: 105798.
|
12 |
潘恩元, 钟原, 李平. 联邦异质性数据下半监督颈椎MRI分割模型[J]. 计算机工程, 2024, 50(9): 367-376.
|
|
PAN E Y, ZHONG Y, LI P. Semi-supervised cervical spine MRI segmentation model in federated heterogeneous data[J]. Computer Engineering, 2024, 50(9): 367-376.
|
13 |
朱逸峰, 赵凯, 郭丽, 等. 基于深度学习模型实现颈椎MR图像上各结构的自动分割[J]. 放射学实践, 2021, 36(12): 1558-1562.
|
|
ZHU Y F, ZHAO K, GUO L, et al. Automatic segmentation of cervical spine structures on MRI images based on deep learning: a preliminary study[J]. Radiology Practice, 2021, 36(12): 1558-1562.
|
14 |
李擎, 皇甫玉彬, 李江昀, 等. UConvTrans: 全局和局部信息交互的双分支心脏图像分割[J]. 上海交通大学学报, 2023, 57(5): 570-581.
|
|
LI Q, HUANGFU Y B, LI J Y, et al. UConvTrans: a dual-flow cardiac image segmentation network by global and local information integration[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581.
|
15 |
张峻宁, 苏群星, 王成, 等. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168.
|
|
ZHANG J N, SU Q X, WANG C, et al. A domain adaptive semantic segmentation network based on improved transformation network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1158-1168.
|
16 |
吕超凡, 言颖杰, 林力, 等. 基于点云语义分割算法的下颌角截骨面设计[J]. 上海交通大学学报, 2022, 56(11): 1509-1517.
|
|
LÜ C F, YAN Y J, LIN L, et al. Design of mandibular angle osteotomy plane based on point cloud semantic segmentation algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517.
|
17 |
DONG Z W, YUAN G J, HUA Z, et al. Diffusion model-based text-guided enhancement network for medical image segmentation[J]. Expert Syst Appl, 2024, 249: 123549.
|
18 |
LI G J, JIN D H, ZHENG Y J, et al. A generic plug & play diffusion-based denosing module for medical image segmentation[J]. Neural Netw, 2024, 172: 106096.
|
19 |
ZHAO Y Y, LI J J, REN L, et al. DTAN: diffusion-based Text Attention Network for medical image segmentation[J]. Comput Biol Med, 2024, 168: 107728.
|
20 |
GUO X T, YANG Y W, YE C F, et al. Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation[C]//2023 IEEE 20th International Symposium on Biomedical Imaging. Cartagena, Colombia: IEEE, 2023: 1-5.
|
21 |
WU J D, JI W, FU H Z, et al. MedSegDiff-V2: diffusion based medical image segmentation with Transformer[EB/OL]. (2023-12-24) [2024-06-19]. http://arxiv.org/abs/2301.11798.
|
22 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Cham, Switzerland: Springer, 2015: 234-241.
|
23 |
WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[C]//Advances in Neural Information Processing System 33 (NeurIPS 2020).Vancouver, Canada: NeurIPS, 2020: 17721-17732.
|
24 |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[EB/OL].(2023-12-24) [2024-06-19]. http://arxiv.org/abs/2006.11239.
|
25 |
SONG J M, MENG C L, ERMON S. Denoising diffusion implicit models[EB/OL].(2022-10-05) [2024-06-19].http://arxiv.org/abs/2010.02502.
|
26 |
DUAN Z J, WANG C Y, CHEN C, et al. Optimal linear subspace search: learning to construct fast and high-quality schedulers for diffusion models[EB/OL].(2023-08-11) [2024-06-19].http://arxiv.org/abs/2305.14677.
|