| [1] |
陈彬彬, 楼丽霞, 叶娟. 中国眼病疾病负担现状及三十年变化趋势[J]. 浙江大学学报(医学版), 2021, 50(4): 420-428.
|
|
CHEN B B, LOU L X, YE J. Eye diseases burden in China in the past 30 years[J]. Journal of Zhejiang University(Medical Sciences), 2021, 50(4): 420-428.
|
| [2] |
陈健祺, 李睿扬, 林铎儒, 等. 人工智能在眼病筛查和诊断中的研究进展[J]. 眼科学报, 2022, 37(3): 208-213.
|
|
CHEN J Q, LI R Y, LIN D R, et al. Research progress of artificial intelligence in screening and diagnosis of eye diseases[J]. Eye Science, 2022, 37(3): 208-213.
|
| [3] |
杨安, 杨莉梅, 张志芳, 等. 基于人工智能的眼科学新进展[J]. 中国数字医学, 2023, 18(12): 68-73.
|
|
YANG A, YANG L M, ZHANG Z F, et al. New advances of ophthalmology based on artificial intelligence[J]. China Digital Medicine, 2023, 18(12): 68-73.
|
| [4] |
LI Z W, WANG L, WU X F, et al. Artificial intelligence in ophthalmology: the path to the real-world clinic[J]. Cell Rep Med, 2023, 4(7): 101095.
|
| [5] |
LEI C Y, DANG K, SONG S F, et al. AI-assisted facial analysis in healthcare: from disease detection to comprehensive management[J]. Patterns (N Y), 2025, 6(2): 101175.
|
| [6] |
陈军, 何鲜桂, 王菁菁, 等. 2021至2030年我国6~18岁学生近视眼患病率预测分析[J]. 中华眼科杂志, 2021, 57(4): 261-267.
|
|
CHEN J, HE X G, WANG J J, et al. Forcasting the prevalence of myopia among students aged 6‒18 years in China from 2021 to 2030[J]. Chinese Journal of Ophthalmology, 2021, 57(4): 261-267.
|
| [7] |
SHU Q, PANG J L, LIU Z J, et al. Artificial intelligence for early detection of pediatric eye diseases using mobile photos[J]. JAMA Netw Open, 2024, 7(8): e2425124.
|
| [8] |
PAVONE P, CHO S Y, PRATICÒ A D, et al. Ptosis in childhood: a clinical sign of several disorders: case series reports and literature review[J]. Medicine (Baltimore), 2018, 97(36): e12124.
|
| [9] |
SOOHOO J R, DAVIES B W, ALLARD F D, et al. Congenital ptosis[J]. Surv Ophthalmol, 2014, 59(5): 483-492.
|
| [10] |
WANG Y J, XU Y F, LIU X, et al. Amblyopia, strabismus and refractive errors in congenital ptosis: a systematic review and meta-analysis[J]. Sci Rep, 2018, 8(1): 8320.
|
| [11] |
YANG Y H, LI R Y, LIN D R, et al. Automatic identification of myopia based on ocular appearance images using deep learning[J]. Ann Transl Med, 2020, 8(11): 705.
|
| [12] |
QI Z Y, LI T Y, CHEN J, et al. A deep learning system for myopia onset prediction and intervention effectiveness evaluation in children[J]. NPJ Digit Med, 2024, 7(1): 206.
|
| [13] |
CHEN W B, LI R Y, YU Q J, et al. Early detection of visual impairment in young children using a smartphone-based deep learning system[J]. Nat Med, 2023, 29(2): 493-503.
|
| [14] |
雷超宇, 王慧, 赵辰, 等. 眼部疾病诊断评估的面部图像采集规范探讨[J]. 数字医学与健康, 2024, 2(4): 219-223.
|
|
LEI C Y, WANG H, ZHAO C, et al. Standards in the collection of facial images for the diagnosis and assessment of ocular diseases[J]. Digital Medicine and Health, 2024, 2(4): 219-223.
|
| [15] |
ANTON N, DOROFTEI B, CURTEANU S, et al. Comprehensive review on the use of artificial intelligence in ophthalmology and future research directions[J]. Diagnostics (Basel), 2022, 13(1): 100.
|
| [16] |
HUI S Q, XIE J, DONG L, et al. Deep learning-based mobile application for efficient eyelid tumor recognition in clinical images[J]. NPJ Digit Med, 2025, 8(1): 185.
|
| [17] |
QIANG J Q, WU D N, DU H Z, et al. Review on facial-recognition-based applications in disease diagnosis[J]. Bioengineering (Basel), 2022, 9(7): 273.
|
| [18] |
YARKHEIR M, SADEGHI M, AZARNOUSH H, et al. Automated strabismus detection and classification using deep learning analysis of facial images[J]. Sci Rep, 2025, 15(1): 3910.
|
| [19] |
LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12): 6999-7019.
|
| [20] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. Int J Comput Vis, 2020, 128(2): 336-359.
|
| [21] |
ZHENG C, YAO Q, LU J W, et al. Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning[J]. Transl Vis Sci Technol, 2021, 10(1): 33.
|
| [22] |
NAM Y, SONG T, LEE J, et al. Development of a neural network-based automated eyelid measurement system[J]. Sci Rep, 2024, 14(1): 1202.
|
| [23] |
LOU L X, CAO J, WANG Y Q, et al. Deep learning-based image analysis for automated measurement of eyelid morphology before and after blepharoptosis surgery[J]. Ann Med, 2021, 53(1): 2278-2285.
|
| [24] |
韦怡宁, 周慧芳. 《ATA/ETA甲状腺眼病管理共识》解读[J]. 中华实验眼科杂志, 2023, 41(11): 1111-1114.
|
|
WEI Y N, ZHOU H F. Interpretation of management of thyroid eye disease: a consensus statement by the American Thyroid Association and the European Thyroid Association[J]. Chinese Journal of Experimental Ophthalmology, 2023, 41(11): 1111-1114.
|
| [25] |
HUANG X, JU L, LI J, et al. An intelligent diagnostic system for thyroid-associated ophthalmopathy based on facial images[J]. Front Med (Lausanne), 2022, 9: 920716.
|
| [26] |
KARLIN J, GAI L S, LAPIERRE N, et al. Ensemble neural network model for detecting thyroid eye disease using external photographs[J]. Br J Ophthalmol, 2023, 107(11): 1722-1729.
|
| [27] |
GUROVICH Y, HANANI Y, BAR O, et al. Identifying facial phenotypes of genetic disorders using deep learning[J]. Nat Med, 2019, 25(1): 60-64.
|
| [28] |
AANJANKUMAR S, SATHYAMOORTHY M, DHANARAJ R K, et al. Prediction of malnutrition in kids by integrating ResNet-50-based deep learning technique using facial images[J]. Sci Rep, 2025, 15: 7871.
|
| [29] |
LIN S, LI Z G, FU B W, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo[J]. Eur Heart J, 2020, 41(46): 4400-4411.
|
| [30] |
WEI R, JIANG C D, GAO J, et al. Deep-learning approach to automatic identification of facial anomalies in endocrine disorders[J]. Neuroendocrinology, 2020, 110(5): 328-337.
|
| [31] |
ROUXEL F, YAUY K, BOURSIER G, et al. Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt[J]. Eur J Hum Genet, 2022, 30(6): 682-686.
|
| [32] |
刘陇黔, 吴达文. 人工智能在眼病筛查和诊断应用中的挑战与展望[J]. 中华眼科杂志, 2024, 60(6): 484-489.
|
|
LIU L Q, WU D W. Challenges and prospects in the application of artificial intelligence for ocular disease screening and diagnosis[J]. Chinese Journal of Ophthalmology, 2024, 60(6): 484-489.
|
| [33] |
李飞, 梁晓莹, 汪德明, 等. 眼科AI诊断:真实世界中的挑战与解决方案[J]. 科学观察, 2025, 20(1): 1-21.
|
|
LI F, LIANG X Y, WANG D M, et al. Ophthalmic AI diagnostics: challenges and solutions in the real world[J]. Science Focus, 2025, 20(1): 1-21.
|
| [34] |
LI W T, YANG Y H, ZHANG K, et al. Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders[J]. Nat Biomed Eng, 2020, 4(8): 767-777.
|
| [35] |
KAISSIS G, ZILLER A, PASSERAT-PALMBACH J, et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging[J]. Nat Mach Intell, 2021, 3: 473-484.
|
| [36] |
ZHU Y M, YIN X F, WEE-CHUNG LIEW A, et al. Privacy-preserving in medical image analysis: a review of methods and applications[M]//Parallel and distributed computing, applications and technologies. Singapore: Springer Nature Singapore, 2025: 166-178.
|
| [37] |
YANG Y H, LYU J F, WANG R X, et al. A digital mask to safeguard patient privacy[J]. Nat Med, 2022, 28(9): 1883-1892.
|
| [38] |
BHUTANI S, ELGENDI M, MENON C. Preserving privacy and video quality through remote physiological signal removal[J]. Commun Eng, 2025, 4(1): 66.
|
| [39] |
ZHU B Q, ZHANG C, SUI Y N, et al. FaceMotionPreserve: a generative approach for facial de-identification and medical information preservation[J]. Sci Rep, 2024, 14(1): 17275.
|