
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (8): 1059-1065.doi: 10.3969/j.issn.1674-8115.2025.08.014
收稿日期:2025-03-11
接受日期:2025-05-13
出版日期:2025-08-28
发布日期:2025-08-18
通讯作者:
程蔚蔚,主任医师,博士;电子信箱:wwcheng29@163.com。
LIANG Shuyuan1,2, YE Baoying2,3, CHENG Weiwei1,2(
)
Received:2025-03-11
Accepted:2025-05-13
Online:2025-08-28
Published:2025-08-18
Contact:
CHENG Weiwei, E-mail: wwcheng29@163.com.摘要:
胎儿生长受限是指胎儿未能达到其遗传潜能所决定的生长潜力水平,是一种常见的妊娠并发症,发生率占妊娠的5%~10%。作为围产期死亡和不良新生儿结局的主要危险因素,胎儿生长受限的早期预测对优化妊娠管理至关重要。现有证据表明,胎儿生长受限与多种妊娠不良结局显著相关,包括宫内缺氧、早产、新生儿窒息乃至新生儿死亡等,还可能影响远期神经系统发育并增加成年期代谢性疾病风险。其发病机制复杂,可能涉及胎盘血流灌注不足及遗传因素等。超声指标是目前诊断胎儿生长受限的主要依据,其中胎儿生物学参数和血流动力学参数具有重要价值。脐动脉血流阻力指数升高、舒张末期血流缺失或反向以及胎盘功能不全与胎儿生长受限严重程度显著相关。然而,约10%超声诊断为胎儿生长受限的胎儿出生后证实为健康小样儿,该假阳性结果可能导致了不必要的临床干预。目前临床尚缺乏公认的胎儿生长受限预测模型,未来研究应致力于建立统一的诊断标准,开发基于人工智能的多指标联合预测工具。早期预测和干预胎儿生长受限对改善围产儿预后有重要意义。该文综述了超声指标、血液指标,及其与人工智能技术整合对胎儿生长受限的预测价值,以期为临床决策提供依据。
中图分类号:
梁书源, 叶宝英, 程蔚蔚. 超声指标和血液指标预测胎儿生长受限的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(8): 1059-1065.
LIANG Shuyuan, YE Baoying, CHENG Weiwei. Research status of ultrasound parameters and blood indicators in predicting fetal growth restriction[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1059-1065.
| [1] | CRISPI F, MIRANDA J, GRATACÓS E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease[J]. Am J Obstet Gynecol, 2018, 218(2S): S869-S879. |
| [2] | MORALES-ROSELLÓ J, KHALIL A, MARTÍNEZ-VAREA A. Management of fetuses with apparent normal growth and abnormal cerebroplacental ratio: a risk-based approach near term[J]. Acta Obstet Gynecol Scand, 2024, 103(2): 334-341. |
| [3] | OLGA L, SOVIO U, WONG H, et al. Association between antenatal diagnosis of late fetal growth restriction and educational outcomes in mid-childhood: a UK prospective cohort study with long-term data linkage study[J]. PLoS Med, 2023, 20(4): e1004225. |
| [4] | DENG J X, SETHI N S A N, AHMAD KAMAR A, et al. Enhancing small-for-gestational-age prediction: multi-country validation of nuchal thickness, estimated fetal weight, and machine learning models[J]. Prenat Diagn, 2025, 45(3): 374-386. |
| [5] | ALLOTEY J, ARCHER L, COOMAR D, et al. Development and validation of prediction models for fetal growth restriction and birthweight: an individual participant data meta-analysis[J]. Health Technol Assess, 2024, 28(47): 1-119. |
| [6] | PUTRA M, PEEK E E H, DEVORE G R, et al. Umbilical vein flows and cardiac size, shape, and ventricular contractility in fetuses with estimated weight less-than 10th centile[J]. J Ultrasound Med, 2024, 43(11): 2069-2084. |
| [7] | SHI S X, HUANG Y L, DING H K, et al. Utility of whole exome sequencing in the evaluation of isolated fetal growth restriction in normal chromosomal microarray analysis[J]. Ann Med, 2025, 57(1): 2476038.. |
| [8] | SACHAN R, SACHAN P, YADAV S, et al. Maternal serum neuropilin a prognostic marker in fetal growth restriction: a tertiary center experience[J]. Ann Afr Med, 2025, 24(2): 438-442. |
| [9] | 胡淼, 张丽姿, 陈敦金. 胎儿生长受限产前、产时管理[J]. 中国计划生育和妇产科, 2023, 15(12): 14-18. |
| HU M, ZHANG L Z, CHEN D J. Prenatal and intrapartum management of fetal growth restriction[J]. Chinese Journal of Family Planning & Gynecotokology, 2023, 15(12): 14-18. | |
| [10] | JIANG H B, SHI D Y, CAI L Y, et al. Characteristics of maternal-placental vascular malperfusion and its correlation with neonatal adverse outcomes[J]. J Reprod Immunol, 2025, 168: 104452. |
| [11] | ZHENG W Z, JIANG Y, JIANG Z K, et al. Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: a multicenter study[J]. Eur J Radiol, 2025, 184: 111985. |
| [12] | ZHAO X, SHEN Y. The value of ultrasound spectra of middle cerebral artery and umbilical artery blood flow in adverse pregnancy outcomes[J]. J Perinat Med, 2024, 53(2): 234-241. |
| [13] | PATNAIK P, KHODAEE A, VASAM G, et al. Automated detection of microscopic placental features indicative of maternal vascular malperfusion using machine learning[J]. Placenta, 2024, 145: 19-26. |
| [14] | GEROVASILI E, SARANTAKI A, BOTHOU A, et al. The role of vitamin D deficiency in placental dysfunction: a systematic review[J]. Metabol Open, 2025, 25: 100350. |
| [15] | 高云鹤, 郑海清, 陈乔珠, 等. 孕早期胎儿生长受限与孕晚期胎儿生长受限的相关性研究[J]. 实用妇产科杂志, 2022, 38(4): 287-291. |
| GAO Y H, ZHENG H Q, CHEN Q Z, et al. Study on the relationship of first-trimester fetal crown-rump length with the third-trimester fetal growth restriction[J]. Journal of Practical Obstetrics and Gynecology, 2022, 38(4): 287-291. | |
| [16] | PATEL S, SARKAR A, PUSHPALATHA K. A prospective study on correlation of first trimester crown-rump length with birth weight[J]. Cureus, 2022, 14(9): e28781. |
| [17] | ARAKAKI T, HASEGAWA J, NAKAMURA M, et al. First-trimester measurements of the three-dimensional ultrasound placental volume and uterine artery Doppler in early- and late-onset fetal growth restriction[J]. J Matern Fetal Neonatal Med, 2020, 33(4): 564-569. |
| [18] | 张翠珠. 沈阳市某医院320例孕妇子宫动脉及其胎儿脐动脉血流监测结果分析[D]. 长春: 吉林大学, 2019. |
| ZHANG C Z. Analysis of uterine artery and fetal umbilical arteryblood flow monitoring of 320 pregnant women in a hospital in Shenyang[D]. Changchun: Jilin University, 2019. | |
| [19] | MAPPA I, MARRA M C, PATELLI C, et al. Effects of uterine Doppler on midbrain growth and cortical development in late onset fetal growth restricted fetuses: a prospective cross-sectional study[J]. J Matern Fetal Neonatal Med, 2024, 37(1): 2318604. |
| [20] | HE B Y, HU C H, ZHOU Y Q. First-trimester screening for fetal growth restriction using Doppler color flow analysis of the uterine artery and serum PAPP-A levels in unselected pregnancies[J]. J Matern Fetal Neonatal Med, 2021, 34(23): 3857-3861. |
| [21] | KUMAR M, BALYAN K, DEBNATH E, et al. Placental biophysical model for prediction of early onset fetal growth restriction in first and second trimester of pregnancy: a prospective cohort study[J]. Placenta, 2024, 154: 153-159. |
| [22] | RIAL-CRESTELO M, LUBUSKY M, PARRA-CORDERO M, et al. Term planned delivery based on fetal growth assessment with or without the cerebroplacental ratio in low-risk pregnancies (RATIO37): an international, multicentre, open-label, randomised controlled trial[J]. Lancet, 2024, 403(10426): 545-553. |
| [23] | ROTTENSTREICH M, AGRAWAL S, FLORES MENDOZA H, et al. The association between discordant umbilical arterial resistance in growth-restricted fetuses and adverse outcomes[J]. Am J Obstet Gynecol, 2024, 231(1): 130.e1-130.e10. |
| [24] | WANG X H, WANG C L, YANG W M, et al. Assessment of the development of the central nervous system in fetuses with fetal growth restriction[J]. Arch Gynecol Obstet, 2024, 310(6): 2963-2971. |
| [25] | FAN H, LI L L, HAO C F. Clinical significance of three-dimensional power Doppler combined with two-dimensional Doppler ultrasonography for evaluating fetal growth restriction[J]. J Matern Fetal Neonatal Med, 2024, 37(1): 2322610. |
| [26] | CHOI E S, LEE H, LEE S J, et al. Ultrasonographic assessment of abnormal fetal growth related to uteroplacental-fetal biometrics and Doppler (U-AID) indices: protocol for multicenter retrospective cohort study trial[J]. PLoS One, 2024, 19(2): e0298060. |
| [27] | POLAT O A, KIRLANGIC M M, SAHIN E, et al. Role of the brain-sparing effect on retinopathy of prematurity in newborns with fetal growth restriction[J]. Curr Med Res Opin, 2024, 40(4): 629-634. |
| [28] | KUMAR A, SINGH A, KUMARI S, et al. Role of cerebroplacental ratio in predicting perinatal outcome[J]. Cureus, 2024, 16(2): e54816. |
| [29] | KHALIL A, MORALES-ROSELLO J, KHAN N, et al. Is cerebroplacental ratio a marker of impaired fetal growth velocity and adverse pregnancy outcome?[J]. Am J Obstet Gynecol, 2017, 216(6): 606.e1-606.e10. |
| [30] | BAHADO-SINGH R O, KOVANCI E, JEFFRES A, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction[J]. Am J Obstet Gynecol, 1999, 180(3 Pt 1): 750-756. |
| [31] | WHITHAM M D, REYNOLDS D M, URBAN A R, et al. Comparative diagnostic performance of estimated fetal weight and isolated abdominal circumference for the detection of fetal growth restriction[J]. J Ultrasound Med, 2023, 42(2): 477-485. |
| [32] | GLEASON J L, REDDY U M, CHEN Z, et al. Comparing population-based fetal growth standards in a US cohort[J]. Am J Obstet Gynecol, 2024, 231(3): 338.e1-338.e18. |
| [33] | FENG Y, ZHENG H Q, FANG D J, et al. Prediction of late-onset fetal growth restriction using a combined first- and second-trimester screening model[J]. J Gynecol Obstet Hum Reprod, 2022, 51(2): 102273. |
| [34] | VAFAI Y, YEUNG E, ROY A, et al. The association between first-trimester omega-3 fatty acid supplementation and fetal growth trajectories[J]. Am J Obstet Gynecol, 2023, 228(2): 224.e1-224.e16. |
| [35] | SNOEK K M, VAN DE WOESTIJNE N, RITFELD V E E G, et al. Preconception maternal gastric bypass surgery and the impact on fetal growth parameters[J]. Surg Obes Relat Dis, 2024, 20(2): 128-137. |
| [36] | 王灿, 黄猛. 胎儿生长受限的超声诊断进展[J]. 国际妇产科学杂志, 2021, 48(5): 508-511. |
| WANG C, HUANG M. The progress of ultrasound diagnosis of fetal growth restriction[J]. Journal of International Obstetrics and Gynecology, 2021, 48(5): 508-511. | |
| [37] | VACHON-MARCEAU C, DEMERS S, MARKEY S, et al. First-trimester placental thickness and the risk of preeclampsia or SGA[J]. Placenta, 2017, 57: 123-128. |
| [38] | 唐琳. 胎盘体积及微血管超声参数对胎儿生长受限的预测价值[D]. 石河子: 石河子大学, 2023. |
| TANG L. Predictive value of placental volume and microvascular ultrasound parameters for fetal growth restriction[D]. Shihezi: Shihezi University, 2023. | |
| [39] | 武丽红, 张斌斌, 黄玲聪. PAPP-A、Netrin-1、PP13及雌三醇水平对胎儿生长受限的预测价值[J]. 中国微生态学杂志, 2018, 30(4): 465-467. |
| WU L H, ZHANG B B, HUANG L C. Predictive values of levels of PAPP-A, Netrin-1, PP13 and estriol for fetal growth restriction[J]. Chinese Journal of Microecology, 2018, 30(4): 465-467. | |
| [40] | YU N, CUI H Y, CHEN X, et al. First trimester maternal serum analytes and second trimester uterine artery Doppler in the prediction of preeclampsia and fetal growth restriction[J]. Taiwan J Obstet Gynecol, 2017, 56(3): 358-361. |
| [41] | GIORGIONE V, RAMNARINE S, MALIK A, et al. The value of angiogenetic biomarkers in the detection of early onset fetal growth restriction[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 299: 91-95. |
| [42] | HENDRIX M L E, BONS J A P, SNELLINGS R R G, et al. Can fetal growth velocity and first trimester maternal biomarkers improve the prediction of small-for-gestational age and adverse neonatal outcome?[J]. Fetal Diagn Ther, 2019, 46(4): 274-284. |
| [43] | PALMRICH P, KALAFAT E, PATEISKY P, et al. Prognostic value of angiogenic markers in pregnancy with fetal growth restriction[J]. Ultrasound Obstet Gynecol, 2024, 63(5): 619-626. |
| [44] | SHINAR S, TIGERT M, AGRAWAL S, et al. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction[J]. Pregnancy Hypertens, 2021, 25: 123-128. |
| [45] | GORDIJN S J, BEUNE I M, THILAGANATHAN B, et al. Consensus definition of fetal growth restriction: a Delphi procedure[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 333-339. |
| [46] | ZHENG C, JI C, WANG B, et al. Construction of prediction model for fetal growth restriction during first trimester in an Asian population[J]. Ultrasound Obstet Gynecol, 2024, 63(3): 321-330. |
| [47] | KENT N L, ATLURI S C, MORITZ K M, et al. Maternal hypothyroidism in rats impairs placental nutrient transporter expression, increases labyrinth zone size, and impairs fetal growth[J]. Placenta, 2023, 139: 148-158. |
| [48] | 刘瑞清, 隋庭玉, 李洁. 胎儿生长受限与母体甲状腺功能减退的相关性分析[J]. 潍坊医学院学报, 2021, 43(1): 23-27. |
| LIU R Q, SUI T Y, LI J. Study on the correlation between fetal growth restriction and maternal hypothyroidism[J]. Acta Academiae Medicinae Weifang, 2021, 43(1): 23-27. | |
| [49] | BURGER R J, GORDIJN S J, MOL B W, et al. Birth-weight centile at term and school performance at 12 years of age: linked cohort study[J]. Ultrasound Obstet Gynecol, 2023, 61(4): 458-465. |
| [50] | LA VERDE M, DE FRANCISCIS P, MOLITIERNO R, et al. Thyroid hormones in early pregnancy and birth weight: a retrospective study[J]. Biomedicines, 2025, 13(3): 542. |
| [51] | HERGHELEGIU C G, VEDUTA A, STEFAN M F, et al. Hyperglycosylated-hCG: its role in trophoblast invasion and intrauterine growth restriction[J]. Cells, 2023, 12(12): 1647. |
| [52] | BARTHO L A, KEENAN E, WALKER S P, et al. Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant[J]. EBioMedicine, 2023, 94: 104704. |
| [53] | ULUSOY C O, KURT A, SEYHANLI Z, et al. Role of inflammatory markers and Doppler parameters in late-onset fetal growth restriction: a machine-learning approach[J]. Am J Reprod Immunol, 2024, 92(4): e70004. |
| [54] | DEVAL R, SAXENA P, PRADHAN D, et al. A machine learning-based intrauterine growth restriction (IUGR) prediction model for newborns[J]. Indian J Pediatr, 2022, 89(11): 1140-1143. |
| [55] | 葛莉萍, 潘健, 谭骥, 等. 胎儿生长受限评估的混合机器学习模型: 一项5年的随访研究[J]. 中国妇幼健康研究, 2024, 35(1): 37-44. |
| GE L P, PAN J, TAN J, et al. Hybrid machine learning models for fetal growth restriction assessment: a 5-year follow-up study[J]. Chinese Journal of Woman and Child Health Research, 2024, 35(1): 37-44. | |
| [56] | LOPIAN M, ULUSOY C O, PRASAD S, et al. Accurate prediction of growth-restricted neonates at term using machine learning[J]. Am J Obstet Gynecol, 2025, 232(5): e170-e173. |
| [1] | 胥瀚文, 陈墨馨, 梁小乙, 舒琴, 聂琬钦, 杨雪峰, 沈慜瑄, 黎晓静, 曹禹, 李琳. 基于面部照片的眼病智能诊断研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1249-1255. |
| [2] | 连明珠, 张常晓, 盛凯, 郭梦, 方姝予. 老年营养风险指数对住院老年2型糖尿病患者发生肺部感染的预测价值[J]. 上海交通大学学报(医学版), 2025, 45(4): 452-458. |
| [3] | 陈蓉, 张锰, 朱荻绮, 郭颖, 沈捷. 基于抗中性粒细胞胞质抗体的列线图模型对川崎病患儿并发冠状动脉病变风险的预测作用[J]. 上海交通大学学报(医学版), 2025, 45(4): 459-467. |
| [4] | 陈佳莹, 褚以忞, 彭海霞. 结直肠癌无进展生存时间预测模型及影响因素研究[J]. 上海交通大学学报(医学版), 2025, 45(3): 324-334. |
| [5] | 宋毅杰, 陈天真, 钟娜, 赵敏. 生成式人工智能在精神医学中的应用与挑战[J]. 上海交通大学学报(医学版), 2025, 45(10): 1271-1278. |
| [6] | 敦译霆, 赵婧, 冯成领, 李行健, 崔迪, 韩邦旻. 机器人辅助腹腔镜根治性前列腺切除术后患者尿失禁的在线风险计算器和列线图预测模型[J]. 上海交通大学学报(医学版), 2025, 45(10): 1361-1371. |
| [7] | 李昕欣, 边懿泽, 赵航, 姜萌. 人工智能辅助测量心肌应变的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(6): 773-778. |
| [8] | 周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳. 基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究[J]. 上海交通大学学报(医学版), 2024, 44(5): 552-559. |
| [9] | 郭勇麟, 陈墨馨, 刘哲源, 李奕霏, 王子琦, 舒琴, 李琳. 基于人工智能技术的斜视诊疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 393-398. |
| [10] | 王梦菲, 杨守志, 乔永霞, 黄琳. 基于临床检验指标建立肺腺癌患者浸润程度判别模型[J]. 上海交通大学学报(医学版), 2024, 44(1): 98-107. |
| [11] | 马奔, 赵成, 束翌俊, 董平. CT影像组学在胃肠道间质瘤中的应用进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 923-930. |
| [12] | 田晓梵, 董怡, 楼文晖, 张琪, 邱艺杰, 左丹, 王文平. 基于超声剪切波弹性成像参数与临床风险因素的术后胰瘘改良预测模型[J]. 上海交通大学学报(医学版), 2023, 43(4): 437-444. |
| [13] | 冯佳丽, 彭宇, 段君凯. 川崎病相关微RNA的功能机制及生物标志物研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 256-260. |
| [14] | 卫雪敏, 高成金. ASPECT评分在急性缺血性脑卒中临床应用中的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 919-924. |
| [15] | 夏坤健, 邓林林, 王琳. 乳腺癌化学治疗致肝损伤预测模型的构建及其评价[J]. 上海交通大学学报(医学版), 2022, 42(4): 502-509. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||