1 |
孙锟, 沈颖, 黄国英. 小儿内科学[M]. 6版. 北京: 人民卫生出版社, 2020: 303.
|
|
SUN K,SHEN Y,HUANG G Y.Pediatric Internal Medicine[M].Beijing: People's Medical Publishing House, 2020: 303.
|
2 |
KIM G B, PARK S, EUN L Y, et al. Epidemiology and clinical features of Kawasaki disease in south Korea, 2012‒2014[J]. Pediatr Infect Dis J, 2017, 36(5): 482-485.
|
3 |
LEONG K, KANE J M, JOY B F. Acquired cardiac disease in the pediatric intensive care unit[J]. Pediatr Ann, 2018, 47(7): e280-e285.
|
4 |
SHUKLA G C, SINGH J, BARIK S. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92.
|
5 |
HA M J, KIM V N. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509-524.
|
6 |
KINSER H E, PINCUS Z. MicroRNAs as modulators of longevity and the aging process[J]. Hum Genet, 2020, 139(3): 291-308.
|
7 |
SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465.
|
8 |
CORTEZ M A, CALIN G A. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases[J]. Expert Opin Biol Ther, 2009, 9(6): 703-711.
|
9 |
CHEN X, BA Y, MA L J, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10): 997-1006.
|
10 |
LIAO C, YIN A H, PENG C F, et al. Noninvasive prenatal diagnosis of common aneuploidies by semiconductor sequencing[J]. Proc Natl Acad Sci USA, 2014, 111(20): 7415-7420.
|
11 |
范雪, 徐明国. 川崎病发病机制及治疗研究进展[J]. 中国实用儿科杂志, 2021, 36(5): 339-344.
|
|
FAN X,XU M G.Research progress in the pathogenesis and treatment of Kawasaki disease[J].Chinese Journal of Practical Pediatrics,2021,36(5):339-344.
|
12 |
NI F F, LI C R, LI Q, et al. Regulatory T cell microRNA expression changes in children with acute Kawasaki disease[J]. Clin Exp Immunol, 2014, 178(2): 384-393.
|
13 |
LUO Y, YANG J, ZHANG C, et al. Up-regulation of miR-27a promotes monocyte-mediated inflammatory responses in Kawasaki disease by inhibiting function of B10 cells[J]. J Leukoc Biol, 2020, 107(1): 133-144.
|
14 |
LI Z Y, JIANG J, TIAN L, et al. A plasma miR-125a-5p as a novel biomarker for Kawasaki disease and induces apoptosis in HUVECs[J]. PLoS One, 2017, 12(5): e0175407.
|
15 |
LIU C W, YANG D G, WANG H, et al. MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease[J]. Mol Cell Biochem, 2021, 476(12): 4245-4263.
|
16 |
NAKAOKA H, HIRONO K, YAMAMOTO S, et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki disease[J]. Sci Rep, 2018, 8(1): 1016.
|
17 |
CHU M P, WU R Z, QIN S S, et al. Bone marrow-derived microRNA-223 works as an endocrine genetic signal in vascular endothelial cells and participates in vascular injury from Kawasaki disease[J]. J Am Heart Assoc, 2017, 6(2): e004878.
|
18 |
ZHANG Y, WANG Y F, ZHANG L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRβ vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
|
19 |
HE M, CHEN Z, MARTIN M, et al. MiR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: therapeutic implications in Kawasaki disease[J]. Circ Res, 2017, 120(2): 354-365.
|
20 |
RONG X, GE D H, SHEN D P, et al. MiR-27b suppresses endothelial cell proliferation and migration by targeting Smad7 in Kawasaki disease[J]. Cell Physiol Biochem, 2018, 48(4): 1804-1814.
|
21 |
GORELIK M, CHUNG S A, ARDALAN K, et al. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of Kawasaki disease[J]. Arthritis Rheumatol, 2022, 74(4): 586-596.
|
22 |
RIZK S R Y, EL SAID G, DANIELS L B, et al. Acute myocardial ischemia in adults secondary to missed Kawasaki disease in childhood[J]. Am J Cardiol, 2015, 115(4): 423-427.
|
23 |
WU R Z, SHEN D P, SOHUN H, et al. miR‑186, a serum microRNA, induces endothelial cell apoptosis by targeting SMAD6 in Kawasaki disease[J]. Int J Mol Med, 2018, 41(4): 1899-1908.
|
24 |
ZHANG X F, XIN G D, SUN D J. Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy[J]. Exp Ther Med, 2018, 16(3): 2420-2432.
|
25 |
LV H F, SUN X Q, ZHOU H X, et al. Diagnostic value of miRNA-122 in Kawasaki disease[J]. Eur Rev Med Pharmacol Sci, 2020, 24(21): 11222-11226.
|
26 |
NING Q Q, CHEN L Q, SONG S R, et al. The platelet microRNA profile of Kawasaki disease: identification of novel diagnostic biomarkers[J]. Biomed Res Int, 2020, 2020: 9061568.
|
27 |
WENG K P, CHENG C F, CHIEN K J, et al. Identifying circulating microRNA in Kawasaki disease by next-generation sequencing approach[J]. Curr Issues Mol Biol, 2021, 43(2): 485-500.
|
28 |
YAN J, WANG H, GAO L X. Diagnostic value of serum miR-1 in patients with acute Kawasaki disease[J]. Clin Lab, 2019, 65(7). DOI:10.7754/Clin.Lab.2019.190339.
|
29 |
SAITO K, NAKAOKA H, TAKASAKI I, et al. MicroRNA-93 may control vascular endothelial growth factor A in circulating peripheral blood mononuclear cells in acute Kawasaki disease[J]. Pediatr Res, 2016, 80(3): 425-432.
|
30 |
SHIMIZU C, KIM J, STEPANOWSKY P, et al. Differential expression of miR-145 in children with Kawasaki disease[J]. PLoS One, 2013, 8(3): e58159.
|
31 |
ZHANG R, WU L, ZHANG H J, et al. Expression levels of plasma miRNA-21 and NT-proBNP in children with Kawasaki disease and their clinical significance[J]. Eur Rev Med Pharmacol Sci, 2020, 24(24): 12757-12762.
|
32 |
ZHENG X L, LI Y F, YUE P, et al. Diagnostic significance of circulating miRNAs in Kawasaki disease in China: current evidence based on a meta-analysis[J]. Medicine, 2021, 100(6): e24174.
|
33 |
JIA H L, LIU C W, ZHANG L, et al. Sets of serum exosomal microRNAs as candidate diagnostic biomarkers for Kawasaki disease[J]. Sci Rep, 2017, 7: 44706.
|
34 |
KIBATA T, SUZUKI Y, HASEGAWA S, et al. Coronary artery lesions and the increasing incidence of Kawasaki disease resistant to initial immunoglobulin[J]. Int J Cardiol, 2016, 214: 209-215.
|
35 |
LI X, CHEN Y, TANG Y J, et al. Predictors of intravenous immunoglobulin-resistant Kawasaki disease in children: a meta-analysis of 4442 cases[J]. Eur J Pediatr, 2018, 177(8): 1279-1292.
|
36 |
ZHANG W, WANG Y, ZENG Y W, et al. Serum miR-200c and miR-371-5p as the useful diagnostic biomarkers and therapeutic targets in Kawasaki disease[J]. Biomed Res Int, 2017, 2017: 8257862.
|
37 |
RONG X, JIA L H, HONG L L, et al. Serum miR-92a-3p as a new potential biomarker for diagnosis of Kawasaki disease with coronary artery lesions[J]. J of Cardiovasc Trans Res, 2017, 10(1): 1-8.
|
38 |
LI S C, HUANG L H, CHIEN K J, et al. MiR-182-5p enhances in vitro neutrophil infiltration in Kawasaki disease[J]. Mol Genet Genomic Med, 2019, 7(12): e990.
|
39 |
WANG Y F, LIAN X L, ZHONG J Y, et al. Serum exosomal microRNA let-7i-3p as candidate diagnostic biomarker for Kawasaki disease patients with coronary artery aneurysm[J]. IUBMB Life, 2019, 71(7): 891-900.
|
40 |
WANG Y F, LU Z L, FU L Y, et al. The miRNA-608 rs4919510 G>C polymorphism confers reduce coronary injury of Kawasaki disease in a southern Chinese population[J]. Biosci Rep, 2019, 39(5): BSR20181660.
|
41 |
FU L Y, XU Y F, YU H Y, et al. Association study of miR-149, miR-196a2, and miR-499a polymorphisms with coronary artery aneurysm of Kawasaki disease in southern Chinese population[J]. J Gene Med, 2022, 24(4): e3405.
|