上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (10): 1378-1383.doi: 10.3969/j.issn.1674-8115.2021.10.017
出版日期:
2021-10-28
发布日期:
2021-09-22
通讯作者:
孙星
E-mail:tracypan@sjtu.edu.cn;xingsun@hotmail.com
作者简介:
顾 鹏(1997—),男,硕士生;电子信箱:tracypan@sjtu.edu.cn。
基金资助:
Online:
2021-10-28
Published:
2021-09-22
Contact:
Xing SUN
E-mail:tracypan@sjtu.edu.cn;xingsun@hotmail.com
Supported by:
摘要:
转录失调是肿瘤发生的核心机制之一。近年来“超级增强子(super-enhancers,SEs)”一词被用来描述基因组中一个极度活跃的转录调节区域。SEs包含一系列复杂的序列成分,对于维持肿瘤细胞功能并促进致癌转录至关重要。SEs富含高密度的转录因子、辅因子及组蛋白修饰标志等。SEs这些组分可协同作用,使其具有比普通增强子更高的转录活性。该文阐述SEs的基本结构与功能、相分离凝集体的形成,探讨SEs驱动致癌转录的机制及拓扑相关结构域的形成及意义。
中图分类号:
顾鹏, 孙星. 超级增强子驱动致癌转录机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(10): 1378-1383.
Peng GU, Xing SUN. Research advances in mechanisms of super-enhancers-driven oncogenesis[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1378-1383.
1 | Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. |
2 | Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer[J]. Cell, 2017, 168(4): 629-643. |
3 | Lee TI, Young RA. Transcriptional regulation and its misregulation in disease[J]. Cell, 2013, 152(6): 1237-1251. |
4 | Benoist C, Chambon P. In vivo sequence requirements of the SV40 early promotor region[J]. Nature, 1981, 290(5804): 304-310. |
5 | 孙长斌, 张曦. 超级增强子研究进展[J]. 遗传, 2016, 38(12): 1056-1068. |
6 | Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers[J]. Cell, 2011, 144(3): 327-339. |
7 | Sur I, Taipale J. The role of enhancers in cancer[J]. Nat Rev Cancer, 2016, 16(8): 483-493. |
8 | Fukaya T, Lim B, Levine M. Enhancer control of transcriptional bursting[J]. Cell, 2016, 166(2): 358-368. |
9 | Whyte WA, Orlando David A, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes[J]. Cell, 2013, 153(2): 307-319. |
10 | ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414): 57-74. |
11 | Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why?[J]. Mol Cell, 2013, 49(5): 825-837. |
12 | Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer[J]. Trends Cancer, 2017, 3(4): 269-281. |
13 | Ramachandran S, Henikoff S. Transcriptional regulators compete with nucleosomes post-replication[J]. Cell, 2016, 165(3): 580-592. |
14 | Gross DS, Garrard WT. Nuclease hypersensitive sites in chromatin[J]. Annu Rev Biochem, 1988, 57: 159-197. |
15 | Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013,155(4): 934-947. |
16 | Hnisz D, Schuijers J, Lin CY, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers[J]. Mol Cell, 2015, 58(2): 362-370. |
17 | Deng R, Huang JH, Wang Y, et al. Disruption of super-enhancer-driven tumor suppressor gene RCAN1.4 expression promotes the malignancy of breast carcinoma[J]. Mol Cancer, 2020, 19(1): 122. |
18 | Lin CY, Erkek S, Tong Y, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins[J]. Nature, 2016, 530(7588): 57-62. |
19 | Levine M, Cattoglio C, Tjian R. Looping back to leap forward: transcription enters a new era[J]. Cell, 2014, 157(1): 13-25. |
20 | Nozawa K, Schneider TR, Cramer P. Core Mediator structure at 3.4 Å extends model of transcription initiation complex[J]. Nature, 2017, 545(7653): 248-251. |
21 | Kagey MH, Newman JJ, Bilodeau S, et al. Mediator and cohesin connect gene expression and chromatin architecture[J]. Nature, 2010, 467(7314): 430-435. |
22 | Hnisz D, Shrinivas K, Young RA, et al. A phase separation model for transcriptional control[J]. Cell, 2017, 169(1): 13-23. |
23 | Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease[J]. Science, 2017, 357(6357): eaaf4382. |
24 | Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732. |
25 | Sabari BR, Dall'Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control[J]. Science, 2018, 361(6400):eaar3958. |
26 | Boija A, Klein IA, Sabari BR, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains[J]. Cell, 2018, 175(7): 1842-1855.e16. |
27 | Lu H, Yu D, Hansen AS, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II[J]. Nature, 2018, 558(7709):318-323. |
28 | Cook PR, Marenduzzo D. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations[J]. Nucleic Acids Res, 2018, 46(19): 9895-9906. |
29 | Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains[J]. Nature, 2010, 468(7327): 1067-1073. |
30 | Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor[J]. Nature, 2014, 511(7511):616-620. |
31 | Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma[J]. Cancer Cell, 2013, 24(6): 777-790. |
32 | Bhagwat AS, Roe JS, Mok BYL, et al. BET bromodomain inhibition releases the mediator complex from select Cis-regulatory elements[J]. Cell Rep, 2016, 15(3): 519-530. |
33 | Chipumuro E, Marco E, Christensen CL, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer[J]. Cell, 2014, 159(5): 1126-1139. |
34 | Wang Y, Zhang T, Kwiatkowski N, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer[J]. Cell, 2015, 163(1): 174-186. |
35 | Faivre EJ, McDaniel KF, Albert DH, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer[J]. Nature, 2020, 578(7794): 306-310. |
36 | McDaniel KF, Wang L, Soltwedel T, et al. Discovery of N-(4-(2,4-Difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a potent and orally available bromodomain and extraterminal domain (BET) family bromodomain inhibitor[J]. J Med Chem, 2017, 60(20): 8369-8384. |
37 | Pelish HE, Liau BB, Nitulescu II, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML[J]. Nature, 2015, 526(7572): 273-276. |
38 | Zhang C, Wei S, Sun WP, et al. Super-enhancer-driven AJUBA is activated by TCF4 and involved in epithelial-mesenchymal transition in the progression of hepatocellular carcinoma[J]. Theranostics, 2020, 10(20): 9066-9082. |
39 | Nguyen TTT, Zhang Y, Shang E, et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models[J]. J Clin Invest, 2020, 130(7): 3699-3716. |
40 | Betancur PA, Abraham BJ, Yiu YY, et al. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer[J]. Nat Commun, 2017, 8:14802. |
41 | Shang E, Nguyen TTT, Shu C, et al. Epigenetic targeting of Mcl-1 is synthetically lethal with Bcl-xL/Bcl-2 inhibition in model systems of glioblastoma[J]. Cancers (Basel), 2020, 12(8): 2137. |
42 | Suzuki HI, Young RA, Sharp PA. Super-enhancer-mediated RNA processing revealed by integrative MicroRNA network analysis[J]. Cell, 2017, 168(6): 1000-1014.e15. |
43 | Han J, Meng J, Chen S, et al. YY1 Complex promotes quaking expression via super-enhancer binding during EMT of hepatocellular carcinoma[J]. Cancer Res, 2019, 79(7): 1451-1464. |
44 | Thandapani P. Super-enhancers in cancer[J]. Pharmacol Ther, 2019, 199: 129-138. |
45 | Mansour MR, Abraham BJ, Anders L, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element[J]. Science, 2014, 346(6215): 1373-1377. |
46 | Oldridge DA, Wood AC, Weichert-Leahey N, et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism[J]. Nature, 2015, 528(7582): 418-421. |
47 | Kandaswamy R, Sava GP, Speedy HE, et al. Genetic predisposition to chronic lymphocytic leukemia is mediated by a BMF super-enhancer polymorphism[J]. Cell Rep, 2016, 16(8): 2061-2067. |
48 | Zhang X, Choi PS, Francis JM, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers[J]. Nat Genet, 2016, 48(2): 176-182. |
49 | Herranz D, Ambesi-Impiombato A, Palomero T, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia[J]. Nat Med, 2014, 20(10): 1130-1137. |
50 | Drier Y, Cotton MJ, Williamson KE, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma[J]. Nat Genet, 2016, 48(3): 265-272. |
51 | Northcott PA, Lee C, Zichner T, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma[J]. Nature, 2014, 511(7510): 428-434. |
52 | Kaiser VB, Semple CA. When TADs go bad: chromatin structure and nuclear organisation in human disease[J]. F1000Res, 2017, 6: 314. |
53 | Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome organization[J]. Mol Cell, 2016, 62(5): 668-680. |
54 | Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 2012, 485(7398): 376-380. |
55 | Dowen JM, Fan ZP, Hnisz D, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes[J]. Cell, 2014, 159(2): 374-387. |
56 | Katainen R, Dave K, Pitkanen E, et al. CTCF/cohesin-binding sites are frequently mutated in cancer[J]. Nat Genet, 2015, 47(7): 818-821. |
57 | Hnisz D, Day DS, Young RA. Insulated neighborhoods: structural and functional units of mammalian gene control[J]. Cell, 2016, 167(5): 1188-1200. |
58 | Weischenfeldt J, Dubash T, Drainas AP, et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking[J]. Nat Genet, 2017, 49(1): 65-74. |
59 | Dixon JR, Xu J, Dileep V, et al. Integrative detection and analysis of structural variation in cancer genomes[J]. Nat Genet, 2018, 50(10): 1388-1398. |
60 | Taberlay PC, Achinger-Kawecka J, Lun AT, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations[J]. Genome Res, 2016, 26(6): 719-731. |
61 | Flavahan WA, Drier Y, Liau BB, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas[J]. Nature, 2016, 529(7584):110-114. |
62 | Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nat Methods, 2013, 10(12): 1213-1218. |
63 | Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930. |
[1] | 宣贝贝, 龚赛楠, 刘佳丽, 全权, 孟雨, 牟晓玲. DNA聚合酶θ在子宫内膜癌中的表达及其临床意义[J]. 上海交通大学学报(医学版), 2021, 41(9): 1207-1214. |
[2] | 胡静燕, 张琳, 张良. 人源核酸烷基化损伤修复酶ALKBH3在肿瘤进展和治疗中的作用[J]. 上海交通大学学报(医学版), 2021, 41(5): 684-689. |
[3] | 顾琦晟, 张米粒, 曹灿, 李继坤. 基于TCGA数据库分析胃癌可变剪接与肿瘤免疫的关系[J]. 上海交通大学学报(医学版), 2021, 41(4): 448-458. |
[4] | 蒋悦庭, 倪佳英, 郭沈睿, 李菡, 庄雨佳, 王锋. 硫酸胆固醇的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2021, 41(3): 371-375. |
[5] | 高境泽,吴 霞. 卵巢肿瘤组织中CXCL9 mRNA表达与患者的预后、免疫微环境特征的相关性研究[J]. 上海交通大学学报(医学版), 2020, 40(4): 457-. |
[6] | 吴慧,仇晓春. 肿瘤领域近期研究进展[J]. 上海交通大学学报(医学版), 2018, 38(2): 237-. |
[7] | 刘舒婷,姚玉峰,倪进婧. 鼠伤寒沙门菌中假定转录调控因子的筛选[J]. 上海交通大学学报(医学版), 2018, 38(10): 1174-. |
[8] | 王焕彬 许杰. 恶性肿瘤复发与p53热点突变体的相关性研究[J]. 上海交通大学学报(医学版), 2016, 36(08): 1121-. |
[9] | 刘锦燕,史册,王影,等. 白假丝酵母菌唑类耐药相关的转录调控研究进展[J]. 上海交通大学学报(医学版), 2016, 36(02): 291-. |
[10] | 罗澜,陈艳娟,万远方. 急性早幼粒细胞白血病患者BAX表达水平及意义[J]. 上海交通大学学报(医学版), 2015, 35(6): 799-. |
[11] | 唐中园,张 宁,狄 文,等. 自噬在癌症中的双重作用[J]. 上海交通大学学报(医学版), 2013, 33(10): 1405-. |
[12] | 高艳虹. 表观遗传调节与常见疾病的发生[J]. , 2009, 29(10): 1256-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||