上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (12): 1698-1702.doi: 10.3969/j.issn.1674-8115.2021.12.022
• 综述 • 上一篇
收稿日期:
2021-05-19
出版日期:
2021-09-22
发布日期:
2021-09-22
通讯作者:
卜军
E-mail:18317005950@163.com;pujun310@hotmail.com
作者简介:
董建勋(1995—),男,博士生;电子信箱:18317005950@163.com。
基金资助:
Jian-xun DONG(), Lai WEI, Jie HE, Ling-cong KONG, Heng GE, Jun PU(
)
Received:
2021-05-19
Online:
2021-09-22
Published:
2021-09-22
Contact:
Jun PU
E-mail:18317005950@163.com;pujun310@hotmail.com
Supported by:
摘要:
左心室机械不同步(left ventricular mechanical dyssynchrony,LVMD)是左心室运动异常的表现之一,而LVMD的相关测量指标是左心室应变的衍生指标,能够预测急性心肌梗死患者的预后和心脏再同步治疗的应答率。诊断LVMD的前提是精确测量左心室各节段的应变值,心脏磁共振(cardiac magnetic resonance,CMR)作为一项新兴的心脏影像学检查手段,能够准确测量左心室各节段的应变值。有很大的临床和科研价值。该文对LVMD的发生机制、CMR对LVMD指标的测量以及CMR所测量的LVMD指标在心脏疾病诊疗中的临床应用做一综述。
中图分类号:
董建勋, 魏莱, 何杰, 孔令璁, 葛恒, 卜军. 心脏磁共振评估左心室机械不同步的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(12): 1698-1702.
Jian-xun DONG, Lai WEI, Jie HE, Ling-cong KONG, Heng GE, Jun PU. Progress of cardiac magnetic resonance in assessment of left ventricular mechanical dyssynchrony[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1698-1702.
1 | Stiermaier T, Backhaus SJ, Lange T, et al. Cardiac magnetic resonance left ventricular mechanical uniformity alterations for risk assessment after acute myocardial infarction[J]. J Am Heart Assoc, 2019, 8(16): e011576. |
2 | Xu Y, He S, Li W, et al. Quantitative mechanical dyssynchrony in dilated cardiomyopathy measured by deformable registration algorithm[J]. Eur Radiol, 2020, 30(4): 2010-2020. |
3 | Schäfer M, Collins KK, Browne LP, et al. Effect of electrical dyssynchrony on left and right ventricular mechanics in children with pulmonary arterial hypertension[J]. J Heart Lung Transplant, 2018, 37(7): 870-878. |
4 | Steinmetz M, Usenbenz S, Kowallick JT, et al. Left ventricular synchrony, torsion, and recoil mechanics in Ebstein's anomaly: insights from cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1): 101. |
5 | Chen J, Garcia EV, Folks RD, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony[J]. J Nucl Cardiol, 2005, 12(6): 687-695. |
6 | Suever JD, Hartlage GR, Magrath RP, et al. Relationship between mechanical dyssynchrony and intra-operative electrical delay times in patients undergoing cardiac resynchronization therapy[J]. J Cardiovasc Magn Reson, 2014, 16: 4. |
7 | Zhang F, Yang W, Wang Y, et al. Is there an association between hibernating myocardium and left ventricular mechanical dyssynchrony in patients with myocardial infarction?[J]. Hell J Nucl Med, 2018, 21(1): 28-34. |
8 | Richardson WJ, Clarke SA, Quinn TA, et al. Physiological implications of myocardial scar structure[J]. Compr Physiol, 2015, 5(4): 1877-1909. |
9 | Zajac J, Eriksson J, Alehagen U, et al. Mechanical dyssynchrony alters left ventricular flow energetics in failing hearts with LBBB: a 4D flow CMR pilot study[J]. Int J Cardiovasc Imaging, 2018, 34(4): 587-596. |
10 | Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC Cardiovasc Imaging, 2019, 12(9): 1849-1863. |
11 | van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart[J]. J Clin Invest, 2013, 123(1): 37-45. |
12 | van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall[J]. Circulation, 1998, 98(6): 588-595. |
13 | Chang SA, Chang HJ, Choi SI, et al. Usefulness of left ventricular dyssynchrony after acute myocardial infarction, assessed by a tagging magnetic resonance image derived metric, as a determinant of ventricular remodeling[J]. Am J Cardiol, 2009, 104(1): 19-23. |
14 | Obokata M, Nagata Y, Wu VC, et al. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(5): 525-532. |
15 | Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. |
16 | Onishi T, Saha SK, Ludwig DR, et al. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking[J]. J Cardiovasc Magn Reson, 2013, 15: 95. |
17 | Khan JN, Singh A, Nazir SA, et al. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction[J]. Eur J Radiol, 2015, 84(5): 840-848. |
18 | Backhaus SJ, Metschies G, Zieschang V, et al. Head-to-head comparison of cardiovascular MR feature tracking cine versus acquisition-based deformation strain imaging using myocardial tagging and strain encoding[J]. Magn Reson Med, 2021, 85(1): 357-368. |
19 | Taylor RJ, Umar F, Moody WE, et al. Feature-tracking cardiovascular magnetic resonance as a novel technique for the assessment of mechanical dyssynchrony[J]. Int J Cardiol, 2014, 175(1): 120-125. |
20 | Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block[J]. Circulation, 2002, 106(14): 1760-1763. |
21 | Kowallick JT, Morton G, Lamata P, et al. Quantitative assessment of left ventricular mechanical dyssynchrony using cine cardiovascular magnetic resonance imaging: inter-study reproducibility[J]. JRSM Cardiovasc Dis, 2017, 6: 2048004017710142. |
22 | Tournoux F, Donal E, Leclercq C, et al. Concordance between mechanical and electrical dyssynchrony in heart failure patients: a function of the underlying cardiomyopathy?[J]. J Cardiovasc Electrophysiol, 2007, 18(10): 1022-1027. |
23 | Ghio S, Constantin C, Klersy C, et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration[J]. Eur Heart J, 2004, 25(7): 571-578. |
24 | Zhou Y, He Z, Liao S, et al. Prognostic value of integrative analysis of electrical and mechanical dyssynchrony in patients with acute heart failure[J]. J Nucl Cardiol, 2021, 28(1): 140-149. |
25 | Yamada S, Arrell DK, Kane GC, et al. Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy[J]. J Am Heart Assoc, 2013, 2(6): e000410. |
26 | Chung ES, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (PROSPECT) trial[J]. Circulation, 2008, 117(20): 2608-2616. |
27 | Bilchick KC, Kuruvilla S, Hamirani YS, et al. Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes[J]. J Am Coll Cardiol, 2014, 63(16): 1657-1666. |
28 | Auger D, Bleeker GB, Bertini M, et al. Effect of cardiac resynchronization therapy in patients without left intraventricular dyssynchrony[J]. Eur Heart J, 2012, 33(7): 913-920. |
29 | Ruschitzka F, Abraham WT, Singh JP, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex[J]. N Engl J Med, 2013, 369(15): 1395-1405. |
30 | Jackson T, Amraoui S, Sohal M, et al. The interaction of QRS duration with cardiac magnetic resonance derived scar and mechanical dyssynchrony in systolic heart failure: implications for cardiac resynchronization therapy[J]. Int J Cardiol Heart Vasc, 2018, 18: 81-85. |
31 | Wong JA, Yee R, Stirrat J, et al. Influence of pacing site characteristics on response to cardiac resynchronization therapy[J]. Circ Cardiovasc Imaging, 2013, 6(4): 542-550. |
32 | Shin SH, Hung CL, Uno H, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both[J]. Circulation. 2010, 121(9): 1096-1103. |
33 | Antoni ML, Boden H, Hoogslag GE, et al. Prevalence of dyssynchrony and relation with long-term outcome in patients after acute myocardial infarction[J]. Am J Cardiol, 2011, 108(12): 1689-1696. |
34 | Noringriis I, Modin D, Pedersen SH, et al. Prognostic importance of mechanical dyssynchrony in predicting heart failure development after ST-segment elevation myocardial infarction[J]. Int J Cardiovasc Imaging, 2019, 35(1): 87-97. |
35 | Manka R, Kozerke S, Rutz AK, et al. A CMR study of the effects of tissue edema and necrosis on left ventricular dyssynchrony in acute myocardial infarction: implications for cardiac resynchronization therapy[J]. J Cardiovasc Magn Reson, 2012, 14: 47. |
36 | Sharma RK, Volpe G, Rosen BD, et al. Prognostic implications of left ventricular dyssynchrony for major adverse cardiovascular events in asymptomatic women and men: the Multi-Ethnic Study of Atherosclerosis[J]. J Am Heart Assoc, 2014, 3(4): e000975. |
37 | Schäfer M, Barker AJ, Morgan GJ, et al. Increased systolic vorticity in the left ventricular outflow tract is associated with abnormal aortic flow formations in tetralogy of Fallot[J]. Int J Cardiovasc Imaging, 2020, 36(4): 691-700. |
38 | Kalaitzidis P, Orwat S, Kempny A, et al. Biventricular dyssynchrony on cardiac magnetic resonance imaging and its correlation with myocardial deformation, ventricular function and objective exercise capacity in patients with repaired tetralogy of Fallot[J]. Int J Cardiol, 2018, 264: 53-57. |
39 | Jing L, Wehner GJ, Suever JD, et al. Left and right ventricular dyssynchrony and strains from cardiovascular magnetic resonance feature tracking do not predict deterioration of ventricular function in patients with repaired tetralogy of Fallot[J]. J Cardiovasc Magn Reson, 2016, 18(1): 49. |
40 | Ruijsink B, Puyol-Anton E, Oksuz I, et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function[J]. JACC Cardiovasc Imaging, 2020, 13(3): 684-695. |
41 | Bai WJ, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. J Cardiovasc Magn Reson, 2018, 20(1): 65. |
42 | Wang Z. Robust and automatic diagnosis of the intraventricular mechanical dyssynchrony for the left ventricle in cardiac magnetic resonance images[J]. Int J Comput Assist Radiol Surg, 2017, 12(9): 1471-1480. |
[1] | 胡培堃, 何杰, 吴连明, 葛恒, 许建荣, 卜军. ST段抬高型心肌梗死患者微血管阻塞对左室功能及预后的影响[J]. 上海交通大学学报(医学版), 2021, 41(2): 173-179. |
[2] | 冯泽豪, 柴烨子, 苏璇, 孙宝航行, 刘启明, 姜萌, 卜军. 体质量指数对系统性红斑狼疮患者心肌累及的影响[J]. 上海交通大学学报(医学版), 2021, 41(2): 180-186. |
[3] | 高亚洁, 马文坤, 高程洁, 周翌, 潘静薇. 心肌应变对急性ST段抬高型心肌梗死后心室重构的预测价值探讨[J]. 上海交通大学学报(医学版), 2021, 41(11): 1478-1484. |
[4] | 唐冬娟,薛晓梅,何 斌. miR-133a对急性心肌梗死的早期诊断及预后评估价值[J]. 上海交通大学学报(医学版), 2020, 40(3): 339-. |
[5] | 冯泽豪1*,张 清1*,柴烨子1,苏 璇1,孙宝航行1,刘启明1,严福华2,姜 萌1#,卜 军1#. 吸烟对急性ST段抬高型心肌梗死急性期心肌损伤及预后的影响[J]. 上海交通大学学报(医学版), 2020, 40(05): 573-582. |
[6] | 夏智丽 1,高程洁 2,高亚洁 1,陶逸菁 1,万青 1,吴昊 1,魏钧伯 1,周翌 1,潘静薇 1. 应激性血糖升高比值对急性心肌梗死患者预后的评估价值[J]. 上海交通大学学报(医学版), 2019, 39(3): 309-. |
[7] | 陶逸菁 1*,夏智丽 1*,高程洁 2,高亚洁 1,吴昊 3,万青 1,李永光 1,陆志刚 1,沈成兴 1,潘静薇 1. 急性心肌梗死再血管化成功后预测左心室重构相关生物标志物的分析[J]. 上海交通大学学报(医学版), 2019, 39(1): 60-. |
[8] | 王玮,赵航,葛恒,丁嵩,沈学东,卜军. 二维斑点追踪超声心动图在评价急性心肌梗死后存活心肌及 预测左心室重构中的价值[J]. 上海交通大学学报(医学版), 2018, 38(12): 1447-. |
[9] | 顾伟峰,卜军 . 心脏磁共振成像技术在冠状动脉粥样硬化性心脏病诊疗中的应用进展[J]. 上海交通大学学报(医学版), 2017, 37(11): 1558-. |
[10] | 吴昊,万青,高程洁,陶逸菁,夏智丽,魏盟,潘静薇 . 探讨梗阻性与非梗阻性肥厚型心肌病左心室应变力的差异[J]. 上海交通大学学报(医学版), 2017, 37(05): 637-. |
[11] | 安东敖蕾,吴连明,葛恒,何奔,路青,胡伽尼,丁海燕,许建荣. T2 mapping在心肌梗死后心肌水肿检测中的应用以及与血清肌酸激酶间的相关性分析[J]. 上海交通大学学报(医学版), 2016, 36(04): 532-. |
[12] | 刘雯薇,杨静,袁素维,等. 单病种质量管理实施前后急性心肌梗死的住院费用评价[J]. 上海交通大学学报(医学版), 2015, 35(6): 876-. |
[13] | 黄斯怡,潘静薇,魏 盟. 心脏磁共振在冠心病诊断及评估预后中的应用[J]. 上海交通大学学报(医学版), 2015, 35(1): 132-. |
[14] | 张文天,连 锋,薛 松. 胎盘生长因子在心肌梗死后的心肌再生治疗中的研究进展[J]. 上海交通大学学报(医学版), 2014, 34(10): 1543-. |
[15] | 宾锋利,王高峰,胡红杰. 双源CT心肌灌注成像临床应用的研究进展[J]. 上海交通大学学报(医学版), 2013, 33(8): 1159-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||