1 |
World Health Organization. Cancer today[DB/OL]. [2020-11-23]. .
|
2 |
Osmani L, Askin F, Gabrielson E, et al. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy[J]. Semin Cancer Biol, 2018, 52(Pt 1): 103-109.
|
3 |
Tso SC, Gui WJ, Wu CY, et al. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase[J]. J Biol Chem, 2014, 289(30): 20583-20593.
|
4 |
Sun H, Olson KC, Gao C, et al. Catabolic defect of branched-chain amino acids promotes heart failure[J]. Circulation, 2016, 133(21): 2038-2049.
|
5 |
Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance[J]. Diabetes, 2019, 68(9): 1730-1746.
|
6 |
Fu T, Liang AL, Liu YJ. Role of P21 in resistance of lung cancer[J]. Chin J Lung Cancer, 2020, 23(7): 597-602.
|
7 |
Al-Sharaky DR, Kandil MAE, Aiad HAS, et al. ROC-1, P21 and CAIX as markers of tumor aggressiveness in bladder carcinoma in Egyptian patients[J]. Diagn Pathol, 2020, 15(1): 33.
|
8 |
Mayers JR, Wu C, Clish CB, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development[J]. Nat Med, 2014, 20(10): 1193-1198.
|
9 |
Ericksen RE, Lim SL, McDonnell E, et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression[J]. Cell Metab, 2019, 29(5): 1151-1165. e6.
|
10 |
Li JT, Yin M, Wang D, et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma[J]. Nat Cell Biol, 2020, 22(2): 167-174.
|
11 |
Reina-Campos M, Moscat J, Diaz-Meco M. Metabolism shapes the tumor microenvironment[J]. Curr Opin Cell Biol, 2017, 48: 47-53.
|
12 |
Budhathoki S, Iwasaki M, Yamaji T, et al. Association of plasma concentrations of branched-chain amino acids with risk of colorectal adenoma in a large Japanese population[J]. Ann Oncol, 2017, 28(4): 818-823.
|
13 |
Nezami Ranjbar MR, Luo Y, di Poto C, et al. GC-MS based plasma metabolomics for identification of candidate biomarkers for hepatocellular carcinoma in Egyptian cohort[J]. PLoS One, 2015, 10(6): e0127299.
|
14 |
Tönjes M, Barbus S, Park YJ, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908.
|
15 |
Hattori A, Tsunoda M, Konuma T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504.
|
16 |
Zhang L, Han JQ. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function[J]. Biochem Biophys Res Commun, 2017, 486(2): 224-231.
|
17 |
Chen M, Zhang H, Zhang G, et al. Targeting TPX2 suppresses proliferation and promotes apoptosis via repression of the PI3k/AKT/P21 signaling pathway and activation of p53 pathway in breast cancer[J]. Biochem Biophys Res Commun, 2018, 507(1/2/3/4): 74-82.
|
18 |
Zhou L, Sheng WW, Jia C, et al. Musashi2 promotes the progression of pancreatic cancer through a novel ISYNA1-p21/ZEB-1 pathway[J]. J Cell Mol Med, 2020, 24(18): 10560-10572.
|
19 |
Zhou XY, Liu H, Ding ZB, et al. lncRNA SNHG16 exerts oncogenic functions in promoting proliferation of glioma through suppressing p21[J]. Pathol Oncol Res, 2020, 26(2): 1021-1028.
|
20 |
Liu X, Zhang F, Zhang Y, et al. PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21[J]. Cell Rep, 2018, 23(5): 1461-1475.
|