1 |
CHANG Y E, MORADI H, KALANTAR-ZADEH K. Emerging paradigms of treating diabetic nephropathy[J]. Lancet Diabetes Endocrinol, 2018, 6(12): 912-913.
|
2 |
CHERNEY D Z I, ODUTAYO A, VERMA S. A big win for diabetic kidney disease: CREDENCE[J]. Cell Metab, 2019, 29(5): 1024-1027.
|
3 |
DE BOER I H. A new chapter for diabetic kidney disease[J]. N Engl J Med, 2017, 377(9): 885-887.
|
4 |
JARDINE M J, MAHAFFEY K W, PERKOVIC V. Canagliflozin and renal outcomes in diabetic nephropathy. Reply[J]. N Engl J Med, 2019, 381(11): 1089-1090.
|
5 |
CHAU B N, XIN C Y, HARTNER J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways[J]. Sci Transl Med, 2012, 4(121): 121ra18.
|
6 |
WANG J Y, GAO Y B, ZHANG N, et al. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2014, 306(5): F486-F495.
|
7 |
DEY N, DAS F, MARIAPPAN M M, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes[J]. J Biol Chem, 2011, 286(29): 25586-25603.
|
8 |
YANG C, HU Y Y, ZHOU B, et al. The role of m6A modification in physiology and disease[J]. Cell Death Dis, 2020, 11(11): 960.
|
9 |
MATHIYALAGAN P, ADAMIAK M, MAYOURIAN J, et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation, 2019, 139(4): 518-532.
|
10 |
LIU E P, LV L, ZHAN Y H, et al. METTL3/N6-methyladenosine/miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-κB pathway activation[J]. J Cell Mol Med, 2021, 25(16): 7660-7674.
|
11 |
CHEN J, ZHANG M J, ZHANG X, et al. EZH2 inhibitor DZNep modulates microglial activation and protects against ischaemic brain injury after experimental stroke[J]. Eur J Pharmacol, 2019, 857: 172452.
|
12 |
OVECHKIN A V, TYAGI N, SEN U, et al. 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice[J]. Am J Physiol Lung Cell Mol Physiol, 2006, 291(5): L905-L911.
|
13 |
MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.
|
14 |
NIU Y M, ZHAO X, WU Y S, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function[J]. Genom Proteom Bioinform, 2013, 11(1): 8-17.
|
15 |
LIU J Z, YUE Y N, HAN D L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95.
|
16 |
MAGHBOOLI Z, LARIJANI B, EMAMGHOLIPOUR S, et al. Aberrant DNA methylation patterns in diabetic nephropathy[J]. J Diabetes Metab Disord, 2014, 13(1): 69.
|
17 |
MARUMO T, YAGI S, KAWARAZAKI W, et al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney[J]. J Am Soc Nephrol, 2015, 26(10): 2388-2397.
|
18 |
JIANG L, LIU X Q, HU X R, et al. METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy[J]. Mol Ther, 2022, 30(4): 1721-1740.
|
19 |
LI Q H, ZHU L Q, YAN Y M, et al. S-adenosyl homocysteine hydrolase (SAHH) accelerates flagellar regeneration in Dunaliella salina[J]. Curr Microbiol, 2013, 67(2): 249-254.
|
20 |
ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624.
|
21 |
DE JESUS D F, ZHANG Z J, KAHRAMAN S, et al. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes[J]. Nat Metab, 2019, 1(8): 765-774.
|
22 |
XIE W, MA L L, XU Y Q, et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun, 2019, 518(1): 120-126.
|
23 |
张丹亭. S-腺苷高半胱氨酸水解酶抑制剂在肝脏葡萄糖糖代谢中的作用[D]. 长春: 东北师范大学, 2019.
|
|
ZHANG D T. 3-Deazaadenosine, mechanism of action in liver glucose metabolism[D]. Changchun: Northeast Normal University, 2019.
|
24 |
ZHONG X, CHUNG A C K, CHEN H Y, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J]. Diabetologia, 2013, 56(3): 663-674.
|
25 |
WANG J Y, GAO Y B, ZHANG N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
|
26 |
SEKAR D, VENUGOPAL B, SEKAR P, et al. Role of microRNA 21 in diabetes and associated/related diseases[J]. Gene, 2016, 582(1): 14-18.
|
27 |
DIAO L T, XIE S J, LEI H, et al. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels[J]. Biochem Biophys Res Commun, 2021, 552: 52-58.
|
28 |
MICHLEWSKI G, CÁCERES J F. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
|