上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (7): 931-938.doi: 10.3969/j.issn.1674-8115.2023.07.016
• 综述 • 上一篇
收稿日期:
2023-02-03
接受日期:
2023-05-25
出版日期:
2023-07-28
发布日期:
2023-07-28
通讯作者:
张晓波
E-mail:wq141269@163.com;zhangxiaobo0307@163.com
作者简介:
王 青(1997—),女,硕士生;电子信箱:wq141269@163.com。
基金资助:
WANG Qing(), HAN Xiao, ZHANG Xiaobo()
Received:
2023-02-03
Accepted:
2023-05-25
Online:
2023-07-28
Published:
2023-07-28
Contact:
ZHANG Xiaobo
E-mail:wq141269@163.com;zhangxiaobo0307@163.com
Supported by:
摘要:
肺炎是最常见的下呼吸道感染性疾病。尽管目前肺炎的诊断及治疗已经取得了相当大的进展,但仍与高死亡率、长期住院和大量医疗支出密切相关。表观遗传修饰是指在不改变DNA序列的情况下,基因表达发生可遗传的改变,包括DNA甲基化、组蛋白修饰、非编码RNA、RNA修饰等,从DNA、组蛋白、转录水平及转录后水平等多层面参与基因表达调控。越来越多的研究表明,表观遗传修饰可通过调控机体免疫功能从而影响肺炎的发生发展。在肺部感染病原体后,这些表观遗传修饰机制可通过调节机体炎症反应和免疫应答,包括不同免疫细胞的发育和分化,感染信号的识别和传递,及针对病原体的细胞因子和效应分子的产生而影响不同个体的肺炎发生发展过程。该文通过回顾近年来对于肺炎免疫中表观遗传修饰的研究,从表观遗传学的角度探讨肺炎的发生发展机制,同时对表观遗传修饰在肺炎临床诊断及治疗中的潜力进行总结,为肺炎的临床精准诊疗和效应靶点的进一步研究提供理参考。
中图分类号:
王青, 韩晓, 张晓波. 表观遗传修饰调控肺炎免疫应答的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 931-938.
WANG Qing, HAN Xiao, ZHANG Xiaobo. Research progress of immune response regulated by epigenetic modification in pneumonia[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 931-938.
图1 表观遗传修饰调控的免疫失衡对肺炎进展的影响机制Note: DNMT—DNA methyltransferase; TET—ten eleven translocation; KMT—histone lysine methyltransferase; HAT—histone acetyltransferase; LSD1—lysine specific demethylase 1; HDACs—histone deacetylases; mRNA—messger RNA; miRNA—microRNA; lncRNA—long noncoding RNA; circRNA—circular RNA; METTL3—methyltransferase-like protein 3; WTAP—Wilms′ tumor 1-associating protein; FTO—fat mass and obesity-associated protein; ALKBH5—AlkB homologue 5; YTHDC—YTH domain containing protein.
Fig 1 Mechanisms of immune imbalance regulated by epigenetic modifications on the progression of pneumonia
1 | GBD 2019 LRI Collaborators. Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990-2019: results from the Global Burden of Disease Study 2019[J]. Lancet Infect Dis, 2022, 22(11): 1626-1647. |
2 | Word Health Organization. Pneumonia[EB/OL]. [2023-01-10]. https://data.unicef.org/topic/child-health/pneumonia/. |
3 | PERIN J, MULICK A, YEUNG D, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals[J]. Lancet Child Adolesc Health, 2022, 6(2): 106-115. |
4 | SANGLA F, LEGOUIS D, MARTI P E, et al. One year after ICU admission for severe community-acquired pneumonia of bacterial, viral or unidentified etiology. What are the outcomes?[J]. PLoS One, 2020, 15(12): e0243762. |
5 | FERREIRA-COIMBRA J, SARDA C, RELLO J. Burden of community-acquired pneumonia and unmet clinical needs[J]. Adv Ther, 2020, 37(4): 1302-1318. |
6 | DROZ N, HSIA Y, ELLIS S, et al. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low-and middle-income countries: a systematic review and meta-analysis[J]. Antimicrob Resist Infect Control, 2019, 8: 207. |
7 | TORRES A, CILLONIZ C, NIEDERMAN M S, et al. Pneumonia[J]. Nat Rev Dis Primers, 2021, 7(1): 25. |
8 | GROUSD J A, RICH H E, ALCORN J F. Host-pathogen interactions in gram-positive bacterial pneumonia[J]. Clin Microbiol Rev, 2019, 32(3): e00107-e00118. |
9 | CHOUDHURI S. From Waddington′s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research[J]. Toxicol Mech Methods, 2011, 21(4): 252-274. |
10 | LIU C, XU J H, CHEN Y H, et al. Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature[J]. Environ Health, 2015, 14: 65. |
11 | ZHAO L F, ZHANG M, BAI L R, et al. Real-world PM2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs[J]. Environ Sci Pollut Res Int, 2022, 29(19): 28788-28803. |
12 | ZHANG Q, CAO X T. Epigenetic remodeling in innate immunity and inflammation[J]. Annu Rev Immunol, 2021, 39: 279-311. |
13 | YIN Y M, MORGUNOVA E, JOLMA A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors[J]. Science, 2017, 356(6337): eaaj2239. |
14 | ZHONG Z H, FENG S H, DUTTKE S H, et al. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2021, 118(5): e2023347118. |
15 | DEKKERS K F, NEELE A E, JUKEMA J W, et al. Human monocyte-to-macrophage differentiation involves highly localized gain and loss of DNA methylation at transcription factor binding sites[J]. Epigenetics Chromatin, 2019, 12(1): 34. |
16 | XIA Y Y, HE F, WU X Y, et al. GABA transporter sustains IL-1β production in macrophages[J]. Sci Adv, 2021, 7(15): eabe9274. |
17 | SINGER B D, MOCK J R, AGGARWAL N R, et al. Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation[J]. Am J Respir Cell Mol Biol, 2015, 52(5): 641-652. |
18 | MCGRATH-MORROW S A, NDEH R, HELMIN K A, et al. DNA methylation regulates the neonatal CD4+ T-cell response to pneumonia in mice[J]. J Biol Chem, 2018, 293(30): 11772-11783. |
19 | BANNISTER S, KIM B, DOMÍNGUEZ-ANDRÉS J, et al. Neonatal BCG vaccination is associated with a long-term DNA methylation signature in circulating monocytes[J]. Sci Adv, 2022, 8(31): eabn4002. |
20 | HEIKKINEN A, BOLLEPALLI S, OLLIKAINEN M. The potential of DNA methylation as a biomarker for obesity and smoking[J]. J Intern Med, 2022, 292(3): 390-408. |
21 | AMPOMAH P B, CAI B S, SUKKA S R, et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution[J]. Nat Metab, 2022, 4(4): 444-457. |
22 | COLE E, BROWN T A, PINKERTON K E, et al. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model[J]. Inhal Toxicol, 2017, 29(10): 435-442. |
23 | CHEN H, LI G, CHAN Y L, et al. Maternal E-cigarette exposure in mice alters DNA methylation and lung cytokine expression in offspring[J]. Am J Respir Cell Mol Biol, 2018, 58(3): 366-377. |
24 | MILLÁN-ZAMBRANO G, BURTON A, BANNISTER A J, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet, 2022, 23(9): 563-580. |
25 | DILLON S C, ZHANG X, TRIEVEL R C, et al. The SET-domain protein superfamily: protein lysine methyltransferases[J]. Genome Biol, 2005, 6(8): 227. |
26 | LI Y, LI G H, ZHANG L, et al. G9a promotes inflammation in Streptococcus pneumoniae induced pneumonia mice by stimulating M1 macrophage polarization and H3K9me2 methylation in FOXP1 promoter region[J]. Ann Transl Med, 2022, 10(10): 583. |
27 | WU S Q, TIAN X C, MAO Q, et al. Azithromycin attenuates wheezing after pulmonary inflammation through inhibiting histone H3K27me3 hypermethylation mediated by EZH2[J]. Clin Epigenetics, 2023, 15(1): 12. |
28 | NITSCH S, ZORRO SHAHIDIAN L, SCHNEIDER R. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism[J]. EMBO Rep, 2021, 22(7): e52774. |
29 | NAGESH P T, HUSSAIN M, GALVIN H D, et al. Histone deacetylase 2 is a component of influenza A virus-induced host antiviral response[J]. Front Microbiol, 2017, 8: 1315. |
30 | MULLICAN S E, GADDIS C A, ALENGHAT T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation[J]. Genes Dev, 2011, 25(23): 2480-2488. |
31 | YAO Y, LIU Q P, ADRIANTO I, et al. Histone deacetylase 3 controls lung alveolar macrophage development and homeostasis[J]. Nat Commun, 2020, 11(1): 3822. |
32 | FENG Q Q, SU Z L, SONG S Y, et al. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation[J]. Int J Mol Med, 2016, 38(3): 812-822. |
33 | DAI J P, GU L M, SU Y, et al. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways[J]. Int Immunopharmacol, 2018, 54: 177-187. |
34 | LIU L, ZHOU X M, SHETTY S, et al. HDAC6 inhibition blocks inflammatory signaling and caspase-1 activation in LPS-induced acute lung injury[J]. Toxicol Appl Pharmacol, 2019, 370: 178-183. |
35 | FABIAN M R, SONENBERG N, FILIPOWICZ W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351-379. |
36 | JIANG K F, YANG J, GUO S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10): 1758-1771. |
37 | ZHANG D, LEE H, WANG X Y, et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation[J]. Thorax, 2019, 74(9): 865-874. |
38 | ZHANG X, HUANG F, YANG D Y, et al. Identification of miRNA-mRNA crosstalk in respiratory syncytial virus- (RSV-) associated pediatric pneumonia through integrated miRNAome and transcriptome analysis[J]. Mediators Inflamm, 2020, 2020: 8919534. |
39 | GONZALO-CALVO D D, BENÍTEZ I D, PINILLA L, et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients[J]. Transl Res, 2021, 236: 147-159. |
40 | GARCÍA-HIDALGO M C, GONZÁLEZ J, BENÍTEZ I D, et al. Identification of circulating microRNA profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS[J]. Emerg Microbes Infect, 2022, 11(1): 1537-1549. |
41 | SUN Q Y, HAO Q Y, PRASANTH K V. Nuclear long noncoding RNAs: key regulators of gene expression[J]. Trends Genet, 2018, 34(2): 142-157. |
42 | RINN J L, CHANG H Y. Long noncoding RNAs: molecular modalities to organismal functions[J]. Annu Rev Biochem, 2020, 89: 283-308. |
43 | LIU S, LIU J Q, YANG X, et al. Cis-acting lnc-Cxcl2 restrains neutrophil-mediated lung inflammation by inhibiting epithelial cell CXCL2 expression in virus infection[J]. Proc Natl Acad Sci U S A, 2021, 118(41): e2108276118. |
44 | CHI X W, DING B C, ZHANG L J, et al. lncRNA GAS5 promotes M1 macrophage polarization via miR-455-5p/SOCS3 pathway in childhood pneumonia[J]. J Cell Physiol, 2019, 234(8): 13242-13251. |
45 | GU H Y, ZHU Y F, ZHOU Y, et al. LncRNA MALAT1 affects Mycoplasma pneumoniae pneumonia via NF-κB regulation[J]. Front Cell Dev Biol, 2020, 8: 563693. |
46 | MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. |
47 | ZHAO T, ZHENG Y L, HAO D Z, et al. Blood circRNAs as biomarkers for the diagnosis of community-acquired pneumonia[J]. J Cell Biochem, 2019, 120(10): 16483-16494. |
48 | KHAN H N, BRANDS X, AUFIERO S, et al. The circular RNA landscape in specific peripheral blood mononuclear cells of critically ill patients with sepsis[J]. Crit Care, 2020, 24(1): 423. |
49 | HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. |
50 | ARORA S, SINGH P, DOHARE R, et al. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19)[J]. Gene, 2020, 762: 145057. |
51 | QU Z Y, MENG F, SHI J Z, et al. A novel intronic circular RNA antagonizes influenza virus by absorbing a microRNA that degrades CREBBP and accelerating IFN-β production[J]. mBio, 2021, 12(4): e0101721. |
52 | BARBAGALLO D, PALERMO C I, BARBAGALLO C, et al. Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells[J]. Cell Mol Life Sci, 2022, 79(2): 75. |
53 | ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. |
54 | AN Y Y, DUAN H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1): 14. |
55 | TONG J Y, WANG X F, LIU Y B, et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation[J]. Sci Adv, 2021, 7(18): eabd4742. |
56 | LIU Y H, LIU Z J, TANG H, et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317(4): C762-C775. |
57 | YU R Q, LI Q M, FENG Z H, et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci, 2019, 20(6): 1323. |
58 | LU M J, ZHANG Z J, XUE M G, et al. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I[J]. Nat Microbiol, 2020, 5(4): 584-598. |
59 | LU M J, XUE M G, WANG H T, et al. Nonsegmented negative-sense RNA viruses utilize N 6-methyladenosine (m6A) as a common strategy to evade host innate immunity[J]. J Virol, 2021, 95(9): e01939-e01920. |
[1] | 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130. |
[2] | 张郁瑭, 金奕婕, 张凤春, 徐迎春. 乳腺癌合并新型冠状病毒肺炎感染患者的抗肿瘤合理化诊疗方案探讨[J]. 上海交通大学学报(医学版), 2022, 42(12): 1745-1750. |
[3] | 姜春宇, 郭晓奎, 秦金红. 肺炎克雷伯菌CRISPR-Cas系统及anti-CRISPR蛋白家族研究进展[J]. 上海交通大学学报(医学版), 2022, 42(12): 1757-1765. |
[4] | 胡婵婵, 范毅, 徐源, 胡志坚, 曾奕明. 脂质代谢在肺癌发生发展及诊疗领域中的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(12): 1766-1771. |
[5] | 李莉莎, 李建辉, 何斌, 吴楠楠, 朱同玉, 郭晓奎, 陈峥宏. 噬菌体治疗泛耐药肺炎克雷伯菌肺部感染的临床应用及效果初探[J]. 上海交通大学学报(医学版), 2021, 41(9): 1272-1276. |
[6] | 熊雷, 易茜, 许明芳, 陈健. MRPL12在肺腺癌中的表达和预后分析[J]. 上海交通大学学报(医学版), 2021, 41(8): 1033-1040. |
[7] | 吴丹, 葛莉萍. 妊娠期糖尿病患者基因DNA甲基化的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1120-1124. |
[8] | 岳江, 周勇, 徐华, 刘文, 韩晓凤, 毛青, 张继东, 麻静, 蒋捍东, 刘伟. 糖脂代谢在新型冠状病毒肺炎普通型和重型患者中的特点分析及比较[J]. 上海交通大学学报(医学版), 2021, 41(3): 355-359. |
[9] | 朱丽, 李云, 奚慧琴, 王维俊, 陈飞, 陆詹婷, 夏凌, 占梦点, 张天瑶. 1例新型冠状病毒肺炎危重型患者行体外膜氧合治疗中的气道管理[J]. 上海交通大学学报(医学版), 2021, 41(3): 406-408. |
[10] | 吕晓亚, 宋磊, 马昭, 王曙光, 马豪, 邵一鸣, 武治印. 新型冠状病毒疫苗免疫策略的强化和优化[J]. 上海交通大学学报(医学版), 2021, 41(12): 1545-1550. |
[11] | 陶晶, 曾庆枝, 党金, 仇剑崟. 新型冠状病毒肺炎心理应激调查问卷的信效度检验[J]. 上海交通大学学报(医学版), 2021, 41(10): 1359-1365. |
[12] | 王 琳1, 2,姜丽萍2, 3,杨 艳2, 4,林炜栋1, 2,章雅青2, 5. 新型冠状病毒肺炎疫情下非疫区综合医院的护理应急管理策略研究[J]. 上海交通大学学报(医学版), 2020, 40(8): 1005-1008. |
[13] | 石大可,胡伟国,杨之涛,林靖生,王晓宁,郭 颖,钱文静,蔡 明,项晓刚,梁晓虹,翟容城,张祎博,倪语星. 整建制援鄂医疗队抗击新型冠状病毒肺炎的院内感染防控经验[J]. 上海交通大学学报(医学版), 2020, 40(8): 1009-1012. |
[14] | 许 莉1, 2,刘 桐1, 2,奚慧琴1, 2,季梦婷1, 2,钱 萍1. 新型冠状病毒肺炎隔离室医护人员身体不适的情况调查[J]. 上海交通大学学报(医学版), 2020, 40(8): 1013-1017. |
[15] | 邹 琛1, 2,徐润灏1, 3,张 泓2,马 展2,陈 黎2,张 洁3,李 敏3,张舒林1. 小分子代谢物在肺癌和肺炎鉴别诊断中的潜在作用[J]. 上海交通大学学报(医学版), 2020, 40(8): 1041-1047. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||